NNLO analysis of Unpolarized DIS Structure Functions

Alberto Guffanti

University of Edinburgh

Work in collaboration with: J. Blümlein and H. Böttcher (DESY, Zeuthen)

BBG Non-Singlet Analysis

Conclusions & Outlook

Motivation

The final HERA-II data, combined with the world data, will allow a reduction of experimental errors on α_s to ~ 1%.

Motivation

Motivation

- The final HERA-II data, combined with the world data, will allow a reduction of experimental errors on α_s to ~ 1%.
- The theoretical error on α_s intrinsic to a NLO analysis is known to be O(5%).

Motivation

Motivation

- The final HERA-II data, combined with the world data, will allow a reduction of experimental errors on α_s to ~ 1%.
- The theoretical error on α_s intrinsic to a NLO analysis is known to be O(5%).
- In order to match the claimed experimental accuracy NNLO results are therefore mandatory on the theoretical side.

Motivation

Aim

- We aim to perform a complete NNLO analyis of unpolarized DIS structure functions in order to:
 - determine α_s with an accuracy of $\mathcal{O}(1\%)$;

Aim

- We aim to perform a complete NNLO analyis of unpolarized DIS structure functions in order to:
 - determine α_s with an accuracy of $\mathcal{O}(1\%)$;
 - extract a parametrization of parton distribution functions with fully correlated errors.

Introduction

Non-Singlet Analysis

[Based on: J. Blümlein, H.Böttcher, AG, hep-ph/0407089 and hep-ph/0605xxx]

 The scope of our non-singlet analysis is to determine the valence distributions: u_v and d_v .

Introduction

Non-Singlet Analysis

[Based on: J. Blümlein, H.Böttcher, AG, hep-ph/0407089 and hep-ph/0605xxx]

- The scope of our non-singlet analysis is to determine the valence distributions: u_{v} and d_{v} .
- Moments of valence distributions are computed on the lattice, thus allowing a direct comparison with our result.

Non-Singlet Analysis

[Based on: J. Blümlein, H.Böttcher, AG, hep-ph/0407089 and hep-ph/0605xxx]

- The scope of our non-singlet analysis is to determine the valence distributions: u_{v} and d_{v} .
- Moments of valence distributions are computed on the lattice, thus allowing a direct comparison with our result.
- Upcoming results from the NNPDF Collaboration on structure function analysis using neural networks also concentrate, at the moment, on the NS sector.

[See A. Piccione's talk]

Non-Singlet Analysis Quick Overview

- Complete NNLO QCD analysis of DIS Non-Singlet data
 - Experiments: BCDMS, NMC, SLAC, H1, ZEUS

•
$$0.3 < x < 1.0 \Longrightarrow F_2^p, F_2^d$$

- $0.0 < x < 0.3 \Longrightarrow F_2^{NS} = 2(F_2^p F_2^d)$
- Heavy Flavour contributions up to NLO are included using the Mellin space parametrization of Alekhin and Blümlein

[S. I. Alekhin and J. Blümlein, Phys. Lett. B594, (2004), 299]

Target Mass Corrections

[H. Georgi and H. D. Politzer, Phys. Rev. D14, (1976), 1829]

Extraction of Higher Twist contributions

[M. Virchaux and A. Milsztajn, Phys. Lett. B274, (1992), 221

A. Guffanti (UoE)

NNLO analysis ...

Non-Singlet Analysis Input distributions

• The u_V and d_V parton distributions are parametrized at the reference scale $Q_0^2 = 4 GeV^2$ with the functional form

 $xq_i(Q_0^2, x) = A_i x^{a_i} (1-x)^{b_i} (1+\rho_i \sqrt{x}+\gamma_i x)$

where the normalization constants A_i are determined by valence quark counting.

Non-Singlet Analysis Input distributions

• The u_V and d_V parton distributions are parametrized at the reference scale $Q_0^2 = 4 GeV^2$ with the functional form

 $xq_i(Q_0^2,x) = A_i x^{a_i}(1-x)^{b_i}(1+\rho_i\sqrt{x}+\gamma_i x)$

where the normalization constants A_i are determined by valence quark counting.

• For $(\overline{d} - \overline{u})$ we use the MRST01 parametrization at $Q_0^2 = 1 \, GeV^2$ $x(\overline{d} - \overline{u})(Q_0^2, x) = 1.195 x^{1.24} (1 - x)^{9.10} (1 + 14.05x - 45.52x^2)$

which provides a good description of E866 Drell-Yan data.

Non-Singlet Analysis Data treatment

Experiment	x	Q^2, GeV^2	F_2^p	Norm
BCDMS (100)	0.35 - 0.75	11.75 - 75.00	51	1.018
BCDMS (120)	0.35 - 0.75	13.25 - 75.00	59	1.011
BCDMS (200)	0.35 - 0.75	32.50 - 137.50	50	1.017
BCDMS (280)	0.35 - 0.75	43.00 - 230.00	49	1.018
NMC (comb)	0.35 - 0.50	7.00 - 65.00	15	1.003
SLAC (comb)	0.30 - 0.62	7.30 - 21.39	57	1.003
H1 (hQ2)	0.40 - 0.65	200 - 30000	26	1.018
ZEUS (hQ2)	0.40 - 0.65	650 - 30000	15	1.001
proton			322	
Experiment	x	Q^2, GeV^2	F_2^d	Norm
BCDMS (120)	0.35 - 0.75	13.25 - 99.00	59	0.992
BCDMS (200)	0.35 - 0.75	32.50 - 137.50	50	0.993
BCDMS (280)	0.35 - 0.75	43.00 - 230.00	49	0.993
NMC (comb)	0.35 - 0.50	7.00 - 65.00	15	0.980
SLAC (comb)	0.30 - 0.62	10.00 - 21.40	59	0.980
deuteron			232	
Experiment	x	Q^2, GeV^2	F_2^{NS}	Norm
BCDMS (120)	0.070 - 0.275	8.75 - 43.00	36	1.000
BCDMS (200)	0.070 - 0.275	17.00 - 75.00	29	1.000
BCDMS (280)	0.100 - 0.275	32.50 - 115.50	27	1.000
NMC (comb)	0.013 - 0.275	4.50 - 65.00	88	1.000
SLAC (comb)	0.153 - 0.293	4.18 - 5.50	28	1.000
non - singlet			208	
total			762	

- Low-y cut on BCDMS (y > 0.3).
- Low energy cut on NMC (Q² > 8GeV²).
- Fit of relative normalizations within the systematic errors quoted by the single expts.

Non-Singlet Analysis Heavy Flavour contributions

- Heavy Flavour contributions are included in the ZM-VFNS.
- We use the Mellin space parametrization of Alekhin and Blümlein of the HF coefficient functions computed by Laenen et al.
- Impact of HF contributions on the NS structure functions is small.

Non-Singlet Analysis Heavy Flavour contributions

- Heavy Flavour contributions are included in the ZM-VFNS.
- We use the Mellin space parametrization of Alekhin and Blümlein of the HF coefficient functions computed by Laenen et al.
- Impact of HF contributions on the NS structure functions is small.

Non-Singlet Analysis Heavy Flavour contributions

- Heavy Flavour contributions are included in the ZM-VFNS.
- We use the Mellin space parametrization of Alekhin and Blümlein of the HF coefficient functions computed by Laenen et al.
- Impact of HF contributions on the NS structure functions is small.

Non-Singlet Analysis Results - Fit parameters, errors and covariance matrix

		NNLO
u_v	a	0.291 ± 0.008
	b	4.013 ± 0.037
	ρ	6.227
	γ	35.629
d_v	a	0.488 ± 0.033
	b	5.878 ± 0.239
	ρ	-3.639
	γ	16.445
$\Lambda_{QCD}^{(4)}$, MeV		226 ± 25
λ	c^2/ndf	472/546 = 0.86

NNLO	$\Lambda^{(4)}_{QCD}$	a _{uv}	b _{uv}	b_{d_v}	b_{d_v}
$\Lambda^{(4)}_{QCD}$	6.45E-4				
a _{uv}	9.03E-5	5.75E-5			
b _{uv}	-3.37E-4	1.55E-4	1.40E-3		
a_{d_v}	1.92E-4	-8.97E-6	-4.69E-4	1.07E-3	
b_{d_v}	9.19E-4	5.82E-5	-3.30E-3	7.21E-3	5.72E-2

- Parameters ρ and γ are fitted once and then kept fixed.
- Only fits with positive definite covariance matrix are kept.

Non-Singlet Analysis Results - PDFs

 The u_ν PDF at the scale 4 GeV² and its evolution, with fully correlated 1σ error bands.

Non-Singlet Analysis Results - PDFs

 The d_ν PDF at the scale 4 GeV² and its evolution, with fully correlated 1σ error bands.

Non-Singlet Analysis Results - α_s , Λ_{QCD} and PDF moments

α_s determination

	$\alpha_s(M_Z^2)$	expt	theory
NNLO			
MRST03	0.1153	± 0.0020	± 0.0030
A02	0.1143	± 0.0014	± 0.0009
SY01(ep)	0.1166	± 0.0013	
$SY01(\nu N)$	0.1153	± 0.0063	
PPC	0 1124	+0.0019	
BUG	0.1134	-0.0021	
World Average	0.1182	± 0.0027	

PDF moments

f	n	BBG(NNLO)	MRST04	A02
u_v	2	0.2986 ± 0.0029	0.285	0.304
	3	0.0871 ± 0.0011	0.082	0.087
	4	0.0333 ± 0.0005	0.032	0.033
d_v	2	0.1239 ± 0.0026	0.115	0.120
	3	0.0315 ± 0.0008	0.028	0.028
	4	0.0105 ± 0.0004	0.009	0.010
$u_v - d_v$	2	0.1747 ± 0.0039	0.171	0.184
	3	0.0556 ± 0.0014	0.055	0.059
	4	0.0228 ± 0.0007	0.022	0.024

Non-Singlet Analysis Results - α_s , Λ_{QCD} and PDF moments

α_s determination

	$\alpha_s(M_Z^2)$	expt	theory
NNLO			
MRST03	0.1153	± 0.0020	± 0.0030
A02	0.1143	± 0.0014	± 0.0009
SY01(ep)	0.1166	± 0.0013	
$SY01(\nu N)$	0.1153	± 0.0063	
BBC	0.1134	+0.0019	
טתנ	0.1104	-0.0021	
World Average	0.1182	± 0.0027	

PDF moments

f	n	BBG(NNLO)	MRST04	A02
u_v	2	0.2986 ± 0.0029	0.285	0.304
	3	0.0871 ± 0.0011	0.082	0.087
	4	0.0333 ± 0.0005	0.032	0.033
d_v	2	0.1239 ± 0.0026	0.115	0.120
	3	0.0315 ± 0.0008	0.028	0.028
	4	0.0105 ± 0.0004	0.009	0.010
$u_v - d_v$	2	0.1747 ± 0.0039	0.171	0.184
	3	0.0556 ± 0.0014	0.055	0.059
	4	0.0228 ± 0.0007	0.022	0.024

Comparison with lattice results

BBG	Lattice
N3LO - $\Lambda_{QCD}^{(4)}$ MeV	Alpha Collaboration - $\Lambda^{(2)}_{QCD}$ MeV
234 ± 26	$245 \pm 16 \pm 16$

[M. Della Morte, et al., Nucl. Phys. B713, (2005), 378]

		BBG	Lattice
f	n	NNLO	QCDSF
$u_v - d_v$	2	0.1747 ± 0.0039	0.191 ± 0.012

[G. Schierholz, private communication]

Non-Singlet Analysis Results - Structure Fuction F₂

- Leading Twist fit:
 W² > 12.5 GeV²
 - $Q^2 > 4 \ GeV^2$
- Higher Twist contributions:
 - $4 < W^2 < 12.5 \ GeV^2$,
 - $Q^2 > 4 \ GeV^2$

Non-Singlet Analysis Results - Structure Fuction F₂

- Leading Twist fit:
 - $W^2 > 12.5 \ GeV^2$, • $Q^2 > 4 \ GeV^2$
- Higher Twist contributions:
 - $4 < W^2 < 12.5 \ GeV^2$,
 - $Q^2 > 4 \ GeV^2$

Non-Singlet Analysis Beyond NNLO

- An extension of the analysis to N³LO is possible using
 - Exact 3-loop Wilson coefficients;
 - Padè approximation for the 4-loop anomalous dimensions.
- Stabilization of all results.
- $\Delta \alpha_s(M_Z^2) = \pm 2\%$.

Non-Singlet Analysis Beyond NNLO - PDFs and α_s

• Nice stability of extracted PDFs increasing the order.

Non-Singlet Analysis Beyond NNLO - PDFs and α_s

• Nice stability of extracted PDFs increasing the order.

Non-Singlet Analysis Beyond NNLO - PDFs and α_s

• Nice stability of extracted PDFs increasing the order.

Λ_{QCD}/α_s determination

	$\Lambda_{QCD}^{(4)}$, MeV	$\alpha_s(M_Z^2)$
NLO	265 ± 27	
NNLO	226 ± 25	$\begin{array}{ccc} 0.1134 & +0.0019 \\ & -0.0021 \end{array} \ ({\rm expt})$
N3LO	$234\pm26\pm1$	$\begin{array}{rrr} 0.1141 & +0.0020 \\ & -0.0022 \end{array} \ ({\rm expt})$

Convergence of Λ^2_{QCD} values as an estimate of theoretical uncertainty.

Non-Singlet Analysis Beyond NNLO - Higher Twist extraction

 Higher Twist contribution are included as

$$F_2(x,Q^2) = F_2^{QCD}(x,Q^2) \left(1 + rac{C_{HT}(x)}{Q^2}
ight)$$

- Inclusion of Higher Orders reduces required Higher Twist contributions.
- Very good consistency between *ep* and *ed* data.

Non-Singlet Analysis Beyond NNLO - Higher Twist extraction

 Higher Twist contribution are included as

$$F_2(x, Q^2) = F_2^{QCD}(x, Q^2) \left(1 + \frac{C_{HT}(x)}{Q^2}\right)$$

- Inclusion of Higher Orders reduces required Higher Twist contributions.
- Very good consistency between *ep* and *ed* data.

Conclusion & Outlook

 To match the precision of upcoming high-accuracy experiments the inclusion of NNLO QCD effects on the theoretical side is mandatory.

Conclusion & Outlook

- To match the precision of upcoming high-accuracy experiments the inclusion of NNLO QCD effects on the theoretical side is mandatory.
- We aim to perform a complete NNLO analysis of DIS structure functions in order to extract α_s and a set of parton distributions with fully correlated errors.

Conclusion & Outlook

- To match the precision of upcoming high-accuracy experiments the inclusion of NNLO QCD effects on the theoretical side is mandatory.
- We aim to perform a complete NNLO analysis of DIS structure functions in order to extract α_s and a set of parton distributions with fully correlated errors.

Status & Outlook

- We completed the Non-Singlet analysis and determined the valence distributions (*u_v* and *d_v*) and Λ_{QCD}.
- Next step is to complete the analysis including the Singlet sector.

