Measurement of F₂^{cc̄} and F₂^{bb̄} at Low Q² and x using the H1 Vertex Detector at HERA

hep-ex/0507081

Paul Laycock

University of Liverpool

Structure Functions, Heavy Quarks and QCD

DIS cross section and Structure Functions:

$$\frac{d^2 \sigma_{NC}^{e^{\pm p}}}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} (1 + (1 - y)^2) \left[F_2 - \frac{y^2}{1 + (1 - y)^2} F_L \right]$$

 $egin{aligned} Q^2 &= -q^2 & virtuality \ of \ \gamma^*, Z^o, W^\pm \ x &= Q^2/2(pq) & Bjorken \ scaling \ variable \ y &= (Pq)/(pk) & inelasticity \end{aligned}$

Define heavy quark reduced cross-sections as:

$$\tilde{\sigma}^{HQ}(x,Q^2) = \frac{d^2 \sigma^{HQ}}{dx dQ^2} \frac{xQ^4}{2\pi\alpha^2 (1+(1-y)^2)} = F_2^{HQ} - \frac{y^2}{1+(1-y)^2} F_L^{HQ}$$

NLO QCD Treatment

Treatment of HQ in QCD m_c^2 ; 2.5 GeV², m_b^2 ; 25 GeV² $Q^2 \gg M_{HQ}^2$ massless scheme $Q^2 \sim M_{HQ}^2$ massive approach (FFNS)

Interpolation over full Q² range: VFNS, e.g. ACOT(CTEQ), MRST

Heavy flavour production is driven by the gluon density

Experimental checks of HQ calculations in pQCD

Thus far the measurements have been limited by statistics, e.g. D* mesons; try to be more inclusive...

Central Silicon Tracker of H1 covers $30^{\circ} < \theta < 150^{\circ}$

and provides precision tracking information *5.7* cm from the vertex:

r ϕ hit resolution of 12 μ m (25 μ m in z)

Measure the **impact parameter** in **r-φ plane** for - **all** tracks with pt > 500 MeV and 2 hits in CST

Look for asymmetries arising from the flavour composition of the event via lifetime signature

Signed impact parameter δ shows sensitivity to the flavour of the event

Sign of δ given by the angle α

Signed impact parameter δ shows sensitivity to the flavour of the event

Sign of δ given by the angle α

Significance distributions

S1 – highest absolute significance track

S2 – 2nd highest absolute significance track with the same sign as S1
S3 – 3rd highest absolute significance track with the same sign as S1 and S2

S2 is sensitive to charm, S3 is sensitive to beauty

Negative component subtraction

subtract the contents of negative bins from the contents of the corresponding positive bins

 \rightarrow substantially reduce uncertainty due to resolution of δ and light quark normalisation

Subtracted significance distributions

 \rightarrow dominated by c

→ increasing b fraction at high S_i Simultaneous fit to subtracted S_1, S_2, S_3 distributions and total number of inclusive events before track selection using c, b and uds shapes from MC

→ individual fit for each x-Q² interval

Subtracted significance distributions

3 parameters:

- P_c scale factor for charm MC (b decays are excluded)
- **P**_b scale factor for beauty MC
- $\mathbf{P}_{\mathbf{l}}$ scale factor for light quark MC

 $P_c = 1.28 \pm 0.04, P_b = 1.55 \pm 0.16, P_l = 0.95 \pm 0.01$

 \rightarrow individual fit for each x-Q² interval

In this and the following plots, higher Q² H1 data is also shown

Results are consistent with H1 and Zeus D* measurements

Results also consistent with all QCD predictions:

MRST04 = NLO QCD VFNS

CTEQ6HQ = NLO QCD VFNS

CCFM = CASCADE Monte Carlo

Extract structure function from the reduced cross-section:

 \rightarrow Small (3% at high y) corrections from F_L

 \rightarrow Bin centre corrections (2-3%) determined using NLO fit

Strong scaling violations: → heavy flavours are driven by the gluon!

Large difference between NNLO and NLO predictions

MRST and CTEQ similarly good description, except for lowest Q² and x (CTEQ prediction is low)

First measurement of b cross-section

Significant differences in NLO QCD predictions but

Statistical precision of the data worse due to large beauty mass, threshold effect

 \rightarrow data consistent with all predictions

MRST04 = NLO QCD VFNS CTEQ6HQ = NLO QCD VFNS CCFM = CASCADE Monte Carlo

Extract structure function from the reduced cross-section:

→ Small (5% at high y) corrections from F_L → Bin centre corrections (2-3%) determined using NLO fit

NNLO not as different to NLO as was the case for charm (beauty samples higher x)

CTEQ ~factor of 2 lower than MRST

Data are consistent with both MRST and CTEQ predictions

Fractional contributions of charm and beauty to proton structure

Charm contributes 15-30%

Beauty contributes 0.3-3.5%

Good description by NLO QCD (MRST04)

Summary

Charm and beauty structure functions F_2^{cc} and F_2^{bb} have been measured in the Q² range from 12 to 60 GeV² using lifetime tagging

Charm:

- Charm contribution to F_2 is around 24%, so we'd better understand it!
- Data are consistent with H1 and Zeus D* results

Beauty:

- Beauty contribution to F_2 ranges from 0.3 to 3.5%
- F_2^{bb} measured for the first time; data consistent with predictions

Overall:

- Both F_2^{cc} and F_2^{bb} are reasonably well described by NLO QCD
- Large potential for Hera II to improve on the precision of these measurements thanks to the increased luminosity and the newly installed forward and backward silicon tracking detectors