Physics Process	HERA II Operation	Positron-Proton Results	Electron-Proton Results	Summary

Neutral Current Cross Sections With Polarised Lepton Beam At ZEUS

Syed Umer Noor York University, Canada

On Behalf of the ZEUS Collaboration

DIS 2006, 20 - 24 April 2006, Tsukuba, Japan

Deep Inelastic Scattering at HERA

- Neutral Current, NC:
 γ or Z⁰ exchange
- Charged Current, CC: W[±] exchange

• Q^2 is the probing power $Q^2 = -q^2 = -(k - k')^2$

x is the Bjorken scaling variable

$$X = \frac{Q^2}{2p \cdot q}$$

• y is the inelasticity $v = \frac{p \cdot q}{q}$

They are all related via,

$$Q^2 = x \cdot y \cdot s$$

s is the centre-of-mass energy squared

$$s=(p+k)^2$$

Unpolarised NC DIS Cross Section

NC DIS cross section

$$\frac{d^{2}\sigma(e^{\pm}p)}{dxdQ^{2}} = \frac{2\pi\alpha^{2}}{xQ^{4}}[Y_{+}F_{2} \mp Y_{-}xF_{3} - y^{2}F_{L}]$$

$$Y_{\pm} \equiv 1 \pm (1 - y)^2$$

Reduced cross section

$$\tilde{\sigma}^{e^{\pm}\rho} = \frac{\mathbf{X}\mathbf{Q}^4}{2\pi\alpha^2} \frac{1}{Y_+} \frac{d^2\sigma(e^{\pm}\rho)}{d\mathbf{X}d\mathbf{Q}^2} = F_2 \mp \frac{Y_-}{Y_+} \mathbf{X}F_3 - \frac{\mathbf{y}^2}{Y_+} F_L$$

Extraction of xF₃

I

$$\tilde{\sigma}^{e^-p} - \tilde{\sigma}^{e^+p} = \frac{Y_-}{Y_+} 2xF_3$$

$$F_2 = F_2^{em} + rac{Q^2}{Q^2 + M_Z^2} F_2^{\gamma Z} + [rac{Q^2}{Q^2 + M_Z^2}]^2 F_2^Z$$

$$F_2 \propto \sum_{q=u...b} (q+ar{q})$$

 $xF_3 \propto \sum_{q=u,..b} (q-\bar{q})$

xF₃: contribution only important at high Q²

$$xF_3 = rac{Q^2}{Q^2 + M_Z^2} xF_3^{\gamma Z} + [rac{Q^2}{Q^2 + M_Z^2}]^2 xF_3^Z$$

F_L: sizeable impact only at high y

 Physics Process
 HERA II Operation
 Positron-Proton Results
 Electron-Proton Results
 Summar

 0000
 000
 00
 000000
 0000000
 0000000

Polarised NC DIS Cross Section

NC DIS cross section modified by polarisation, P_e

$$\begin{aligned} \frac{d^2\sigma(e^{\pm}p)}{dxdQ^2} &= \frac{2\pi\alpha^2}{xQ^4} [H_0^{\pm} + P_e H_P^{\pm}] \\ P_e &= \frac{N_R - N_L}{N_R + N_L} \\ H_{0/P}^{\pm} &= Y_+ F_2^{0/P} \mp Y_- x F_3^{0/P} \end{aligned}$$

Using polarised and unpolarised structure functions $F_2^{0/P} = \sum_i x(q_i + \bar{q}_i)A_i^{0/P} \qquad xF_3^{0/P} = \sum_i x(q_i - \bar{q}_i)B_i^{0/P}$

• Where $A_i^{0/P}$ and $B_i^{0/P}$ contain the electron and quark couplings

Polarised and Unpolarised Coefficients

Unpolarised coefficients

$$egin{aligned} & A_i^0 = e_i^2 - 2e_i v_i v_e P_Z + (v_e^2 + a_e^2)(v_i^2 + a_i^2) P_Z^2 \ & B_i^0 = -2e_i a_i a_e P_Z + 4a_i v_i v_e a_e P_Z^2 \end{aligned}$$

v: vector coupling a: axial coupling

Polarised coefficients

$$egin{aligned} {A}^P_i &= 2 e_i a_e v_i P_Z - 2 a_e v_e (v_i^2 + a_i^2) P_Z^2 \ {B}^P_i &= 2 e_i a_i v_e P_Z - 2 a_i v_i (v_e^2 + a_e^2) P_Z^2 \end{aligned}$$

- All terms in the polarised coefficients depend on P_Z $P_Z = \frac{Q^2}{Q^2 + M_Z^2} \frac{1}{\sin^2 2\theta_W}$
- So polarised structure functions depend only on terms related to Z⁰ exchange
- Expect effect of polarisation on the NC cross section to be significant only at high Q²

Physics Process	HERA II Operation	Positron-Proton Results	Electron-Proton Results	
Luminosi	ty			

Polarisation

- Transverse polarisation builds up naturally in lepton beam
- Spin rotators turn this into longitudinal polarisation
- e^+p data $\rightarrow \mathcal{L}$ weighted average of +32% and -41%
- $\blacksquare~e^-p~data \rightarrow \mathcal{L}$ weighted average of +33% and -27%

Syed Umer Noor (York University)

NC with Polarised Leptons at ZEUS

 Physics Process
 HERA II Operation
 Positron-Proton Results
 Electron-Proton Results
 Summ

 0000
 00
 00
 000000
 000000
 0000000

NC DIS Event in the ZEUS Detector

Well measured scattered electron with high transverse momentum
 Energy deposits of electron and hadronic jet balanced in *\phi*

Syed Umer Noor (York University)

NC with Polarised Leptons at ZEUS

Neutral Current Sample (e⁺p Data)

e⁺p data, L = 23.8 pb⁻¹
 P_e = +32%, L = 12.3 pb⁻¹

- P_e = -41%, \mathcal{L} = 11.5 pb⁻¹
- Q² and x from double angle method
- Scattered electron angle with respect to the proton direction
- Hadronic jet angle and transverse momentum
- Z position of the ep interaction vertex
- Data understood well

$d\sigma/dQ^2$ with +ve and -ve P_e

Top, middle, bottom plots:

- $d\sigma/dQ^2$ with +ve P_e
- $d\sigma/dQ^2$ with -ve P_e
- Ratio of cross-sections, +ve P_e / -ve P_e
- Measurements consistent with SM expectations
- χ^2 test for Q² > 1000 GeV²:
- +ve P_e / -ve P_e = 1 case
 - χ^2 / ndf = 1.5
- +ve P_e / -ve P_e = SM case • χ^2 / ndf = 0.3

DIS 2006, 20 - 24 April 2006

Syed Umer Noor (York University)

Neutral Current Sample (e⁻p Data)

ZEUS

• e^-p data, $\mathcal{L} = 121.5 \text{ pb}^{-1}$

- P_e = +33%, *L* = 42.7 pb⁻¹
- P_e = -27%, \mathcal{L} = 78.8 pb⁻¹
- Q², x and y calculated using the double angle method
- Scattered electron energy and angle
- Hadronic jet angle and transverse momentum
- Z position of the vertex
- Data well described

DIS 2006, 20 - 24 April 2006

$d\sigma/dQ^2$ with +ve and -ve P_e

Top, middle, bottom plots:

- $d\sigma/dQ^2$ with +ve P_e
- $d\sigma/dQ^2$ with -ve P_e
- Ratio of cross-sections, +ve P_e / -ve P_e
- Parity violation now clearly observed in NC data!
- χ^2 test for all points:
- +ve P_e / -ve P_e = 1 case
 - χ^2 / ndf = 50.1 / 20 = 2.51

+ve P_e / -ve P_e = SM case
 χ² / ndf = 9.44 / 20 = 0.47

$d\sigma/dx$ and $d\sigma/dy$ with +ve and -ve P_e

Overall shift in cross-section ratios due to polarisation

Syed Umer Noor (York University)

NC with Polarised Leptons at ZEUS

- First measurements of reduced cross sections with polarised e⁻
- $\blacksquare Closed circles \rightarrow \text{-ve } P_e \text{ data}$
- Open circles \rightarrow +ve P_e data
- Polarisation gives a small effect on õ
- Data agrees well with prediction

- Closed circles → Full data set of õ^{e⁻p} corrected for residual polarization (P_e ~ -6%)
- Open circles → Previously measured unpolarised õ^{e+p}
- Difference in σ̃ seen very well between e⁻p and e⁺p

This is our xF₃!

$$ilde{\sigma}^{e^{\pm}p} = F_2 \mp rac{Y_-}{Y_+} x F_3 - rac{y^2}{Y_+} F_L$$

Syed Umer Noor (York University)

DIS 2006, 20 - 24 April 2006

15/17

xF₃ Extraction

ZEUS

e[±]p data combined to extract xF₃

$$\tilde{\sigma}^{e^-p} - \tilde{\sigma}^{e^+p} = rac{\mathsf{Y}_-}{\mathsf{Y}_+} 2\mathsf{x}\mathsf{F}_3$$

- Previous measurement dominated by statistical uncertainties due to limited amount of e⁻p data ~ 16 pb⁻¹
- Now can make use of ~ 120 pb⁻¹ of e⁻p data!

 More precise xF₃ measurement

Physics Process	HERA II Operation	Positron-Proton Results	Electron-Proton Results	Summary
Summary				

- First measurements of the polarised cross sections with e⁺p and e⁻p data with polarised lepton beam
- Parity violation clearly observed with high luminosity e⁻p data!
- xF₃ measurement made combining new e⁻p data with previously measured unpolarised e⁺p data

Outlook

- Look forward to more polarised e⁻p running this year with a switch to positrons this summer
- Hope to achieve precision measurements with full HERA II data set O(1fb⁻¹)

17/17