QCD and EW analysis of the ZEUS NC/CC inclusive and jet cross sections

Shima Shimizu (Univ. of Tokyo) on behalf of ZEUS collaboration

Extraction of PDFs

- x-dependence of PDFs can be extracted from fits to measured cross sections.
- PDFs@ Q_0^2 ← Input
 Evolution in Q^2 PDFs@ Q^2
- Fit to measured cross sections @ Q²

More details are in the next slide.

- Wide kinematic region at HERA
 - \rightarrow suitable for extraction of PDFs
 - Sea & Gluon (from $dF_2/dlnQ^2$) @ low x
 - \rightarrow EW sensitivity @ high Q²

Extraction of PDFs at ZEUS

• PDFs: parameterization @ $Q_0^2 = 7 \text{GeV}^2$

 $x f(x) = A x^b (1-x)^c (1+dx)$ for xu_v , xd_v , xS, xg, $x\Delta(=x\overline{d}-x\overline{u})$

A: Normalization, b: Low x, c: High x, d: smoothing for middle x

Constraints

- Momentum and number sum rule \rightarrow A_{uv}, A_{dv}, A_g
- Equal behaviour of u_v and d_v at low $x \rightarrow b_{uv} = b_{dv}$
- Δ : consistent with Gottfried sum rule and Drell Yan (CCFR)

11 free parameters

- DGLAP evolution at NLO (MSbar)
- Heavy quarks are treated in variable flavour-number scheme of Thorne and Roberts.
- Corr. syst. uncertainties are evaluated using OFFSET method.

ZEUS-JETS fit

First fit using HERA jets data.

- → Making use of full potential of ZEUS data (and alone) in HERA I.
 - HERA I inclusive NC/CC cross sections (94-00)
 - Inclusive jets cross sections in DIS (96-97)
 - Dijets in photoproduction (96-97)

Single experiment

 \rightarrow systematic uncertainties are well understood.

Jets cross sections

 \rightarrow sensitive to gluon density.

NEW! Fit including HERA II

Now we measure polarized e⁻p NC/CC inclusive cross sections in HERA II ! → See talks from U.Noor & H.Kaji.

Much statistics at High Q² with Polarized electrons

NC/CC electron data			
HERA I	HERA II		
16pb ⁻¹	121.5pb ⁻¹		
92/26	180/70		
data points	data points		

NC/CC alastrop data

polarization: P=-0.27: 78.8pb-1, P=+0.33: 42.7pb-1

 → better determination of PDFs at high x (← high Q²).
 → better sensitivity to EW

New fit: ZEUS-pol fit (preliminary)

First fit including polarized cross sections!

- Data: <u>ZEUS-JETS data + HERA II</u>
 - 94-00 inclusive NC/CC cross sections
 - 96-97 Jet cross sections in DIS and photoproduction
 - 04-05 polarized e⁻p NC/CC inclusive cross sections
- All EW parameters are fixed to SM values.

Polarized NC cross sections

Data is well described by ZEUS-pol Fit. The polarized cross sections from HERA-II were successfully fitted for the first time.

Polarized CC cross sections

Data is well described by ZEUS-pol Fit. The polarized cross sections from HERA-II were successfully fitted for the first time.

- Central values of PDFs are almost unchanged by addition of HERA II electron data.
- Uncertainties are reduced. high-x and particulary on xu_v

e-p:
$$e_u = \frac{2}{3}e, \ e_d = -\frac{1}{3}e \rightarrow \sigma_{NC} \propto (4u+d), \ \sigma_{CC} \propto u$$

8

PDF uncertainties at very High Q²

 Improvement of PDF uncertainties is also seen at Q²=10000GeV².
 Good news for LHC physics.

Q²=10000 GeV²

Combined QCD and EW analysis

HERA II data:

In addition to much statistics, polarization gives direct sensitivity to EW.

 \rightarrow Let's exploit the sensitivity to determine EW parameters!

A combined QCD + EW analysis

EW parameters and PDFs are determined simultaneously. \leftarrow The correlation between them is taken into account automatically in the fit.

1. Extraction of M_W

←CC cross sections

2. Extraction of quark couplings to Z ←NC cross sections

Extraction of M_w (1)

CC cross sections

 $\frac{d^2\sigma(e^{\pm}p)}{dxdQ^2} = \frac{G_F^2}{4\pi x} \frac{M_W^4}{(Q^2 + M_W^2)^2} [Y_+W_2(x,Q^2) \mp Y_-W_3(x,Q^2)] \quad (\mathsf{F_L} \text{ neglected})$

M_w and PDF parameters are free:

(Note: G_F is fixed. M_w contributes also to normalization.)

 $M_W = 79.1 \pm 0.77(stat + uncorr) \pm 0.99(corr.sys.) [GeV] (prel.)$

HERA I results:

$$\begin{split} \mathsf{M}_{\mathsf{W}} = &78.9 \pm 2.0 \text{ (stat)} \pm 1.8 \text{ (sys)}^{+2.2} \text{,}_{-1.8} \text{ (PDF) [GeV]} \\ & (\mathsf{ZEUS} \ \textit{Euro.} \ \textit{Phys.} \ \textit{J.} \ \textit{C32} \ (2003) \ \textit{1-16}) \\ \mathsf{M}_{\mathsf{W}} = &82.87 \pm 1.82 \ (\text{exp}) \ ^{+0.32} \text{,}_{-0.18} \ (\text{model}) \ [\text{GeV]} \\ & (\text{H1} \ \textit{Phys.} \ \textit{Lett.} \ \textit{B632} \ (2006) \ \textit{35-42}) \end{split}$$

- The combined QCD and EW analysis on HERA I + II CC data gives us improved determination of M_{W.}
- Note: M_W is space-like. \rightarrow more general 'propagator' fit can be done.

Extraction of M_w (2)

 Determination of BOTH G_F and M_W (ZEUS-pol-G_F-M_w fit)

$$\frac{G_F^2}{4\pi x} \frac{M_W^4}{(Q^2 + M_W^2)^2}$$

 $\begin{aligned} G_{F} = 1.127 \pm 0.013 \pm 0.014 \times 10^{-5} \,[\text{GeV}^{-2}] \\ M_{W} = 82.8 \pm 1.5 \pm 1.3 \,[\text{GeV}] \end{aligned} \qquad \textit{preliminary} \end{aligned}$

• Determination of M_W as more general 'propagator mass' with general coupling g (ZEUS-pol-g-M_w fit) $\frac{1}{4\pi x} \frac{g^2}{(Q^2 + M_w^2)^2}$

 $g=0.0772 \pm 0.0021 \pm 0.0019$

 $M_W = 82.8 \pm 1.5 \pm 1.3 [GeV]$

 $4\pi x \left(Q^2 + M_W^2 \right)$

preliminary

• They are in good agreement with the world average values! $G_F=1.16639 \times 10^{-5} \text{ GeV}^{-2}$ $M_W=80.4 \text{ GeV}$ $g = G_F M_W^2 = 0.07542$ 12

Polarized NC cross sections

 $\sigma(e^{\pm}p) = (Y_{\pm}F_{2}^{0} \mp Y_{\pm}xF_{3}^{0}) \mp P(Y_{\pm}F_{2}^{P} \mp Y_{\pm}xF_{3}^{P})$ NC cross section: Structure functions: $F_2^{0,P} = \sum A_i^{0,P} (Q^2) [xq_i(x,Q^2) + x\overline{q_i}(x,Q^2)]$ $xF_{3}^{0,p} = \sum B_{i}^{0,P}(Q^{2})[xq_{i}(x,Q^{2}) - x\overline{q}_{i}(x,Q^{2})]$ unpolarized coefficients $A_i^0(Q^2) = e_i^2 - 2e_i v_i v_e P_Z + (v_e^2 + a_e^2)(v_i^2 + a_i^2) P_Z^2 \qquad P_Z = \frac{1}{\sin^2 2\theta} \frac{Q^2}{(M_Z^2 + O^2)}$ a : axial coupling $B_{i}^{0}(Q^{2}) = -2e_{i}a_{i}a_{e}P_{Z} + 4a_{i}a_{e}v_{i}v_{e}P_{Z}^{2}$ v : vector coupling polarized coefficients : quarks $A_i^P(Q^2) = 2e_i v_i a_e P_Z - 2v_e a_e (v_i^2 + a_i^2) P_Z^2$ In SM formalism, $a_a = T_a^3$ $B_i^P(Q^2) = 2e_i a_i v_e P_z - 2v_i a_i (v_e^2 + a_e^2) P_z^2$ $v_a = T_a^3 - 2e_a \sin^2 \theta_w$

> v_e is very small (~0.04). $P_Z >> P_Z^2$ (~middle Q²)

unpolarized $xF_3 \rightarrow a_i$, polarized $F_2 \rightarrow v_i$

Extraction of quark couplings to Z

Axial/vector couplings of u/d-type quark: 4 couplings \rightarrow 2 of them are free and fitted together with PDFs: 4 fits in total

		a _u	a _d	V _u	V _d
ults (preliminary)	SM	0.5	-0.5	0.196	-0.346
	ZEUS-pol-a _u -v _u fit	0.50 ±0.04±0.09	fixed	0.19 ±0.06±0.06	fixed
	ZEUS-pol-a _d -v _d fit	fixed	-0.49 ±0.14±0.28	fixed	-0.37 ±0.14±0.16
	ZEUS-pol-a _u -a _d fit	0.48 ±0.06±0.10	-0.55 ±0.10±0.21	fixed	fixed
Resi	ZEUS-pol-v _u -v _d fit	fixed	fixed	0.12 ±0.10±0.05	-0.47 ±0.15±0.19

- Note: These fits parameterize the couplings in most general way.
- They are in good agreement with SM predictions.

 \rightarrow Contours will be shown in the next slides.

We also extract couplings without HERA II data with same parameter settings (----- ZEUS-JETS-a_i-v_i fit)

HERA II data constrains the quark couplings well. They agree well with SM prediction.

a_i vs. v_i : Comparison with other experiments

ZEUS-pol-a_i-v_i fit shows excellent constraint on quark couplings. (Better or comparable constraint with respect to others!)

v_u **vs. v**_d

QCD+EW fit: Using SM relation

• In SM formalism,
$$a_q = T_q^3$$

 $v_q = T_q^3 - 2e_q \sin^2 \theta_W$

→ Determine T_u^3 , T_d^3 , $\sin^2 \theta_W$: 3 EW parameters Note: $\sin^2 \theta_W$ is also in Z exchange term (P_Z)

Right handed Isospin

• Introduce right handed isospin, $T_{q,R}^3$, which should be 0 in SM, $a_q = T_{q,L}^3 + T_{q,R}^3$, $T_{q,R}^3 - 2e_q \sin^2 \theta_W$, $T_{u,L}^3 = 1/2, T_{d,L}^3 = -1/2$ Results (preliminary), $T_u^3 = T_u^3 d_R$, $T_u^3 = 1/2, T_{u,L}^3 = 1/2, T_{u,L}^3 = -1/2$

Results (preliminary)	T ³ u _R	T ³ d _R	sin²⊖ _W
ZEUS-pol-T ³ _{u,R} -T ³ _{d,R} fit	-0.04	-0.14	0.2315
	±0.06±0.13	±0.18±0.33	fixed
ZEUS-pol-T ³ _{u,R} -T ³ _{d,R} -sin ² θ _W fit	-0.07	-0.26	0.238
	±0.07±0.07	±0.19±0.19	±0.011±0.023

No deviation from SM is seen. They are well constrained by the fits.

Summary

- We have HERA II data.
 - Large luminosity with polarized electrons.
- New fit including HERA II data: ZEUS-pol fit
 - HERA II data is well described and fitted.
 - Uncertainties of PDFs are reduced.
- EW parameters are extracted from combined analysis of EW and PDFs (ZEUS-pol-Mw fit, etc).
 - Extracted M_W is consistent with the world average value.
 - Quark couplings are determined with excellent precision.

They are well consistent with SM.

Back up slides

PDF Parameterization

u-valence (xu _v)	$A_{uv} x^{buv} (1-x)^{cuv} (1+d_{uv}x)$
d-valence (xd _v)	$\mathbf{A}_{\mathbf{dv}} \mathbf{x}^{\mathbf{b} \mathbf{dv}} (1 - \mathbf{x})^{\mathbf{c} \mathbf{dv}} (1 + \mathbf{d}_{\mathbf{dv}} \mathbf{x})$
Sea (xS)	A _S x ^{bS} (1-x) ^{cS}
gluon (xg)	$A_{g} x^{bg} (1-x)^{cg} (1+d_{g}x)$
dbar-ubar (x Δ)	0.27 x ^{0.5} (1-x) ^c ∆

Constraints

- Momentum and number sum rule
- \bullet Equal behaviour of u_v and d_v at low x
- Δ : consistent with Gottfried sum rule and Drell Yan

11 free parameters

OFFSET method

 χ^2 is defined as $[F_i^{\text{QCD}}(p) + \sum s_\lambda \Delta_{i\lambda}^{\text{sys}} - F_i^{\text{meas}}]^2$ $\chi^{2} = \sum_{i} \frac{\overline{\lambda}}{(\sigma_{i}^{\text{stat}^{2}} + \sigma_{i}^{\text{unc.sys}^{2}})} + \sum_{\lambda} s_{\lambda}^{2}$

 σ_i^{stat} : statistical uncertainty $\sigma_i^{\text{unc.sys}}$: uncorrelated systematic uncertainty F_i^{QCD} : prediction from QCD F_i^{meas} : measured data point s_{λ} : fit parameter of systematic uncertainty $\Delta_{i\lambda}^{sys}$: correlated systematic uncertainty

- Central values are extracted without any correlated systematic 1. uncertainties ($s_{\lambda}=0$).
- 2. For each source of correlated systematic uncertainty (i.e. for each λ);
 - Data points are shifted to the limit of the uncertainty $(s_{\lambda} = \pm 1)$.
 - Deviation from the central value is extracted by re-doing the fit.
- 3. Add all deviations in quadrature

No assumption of gaussian shape for correlated systematic uncertainties. Conservative method.