#### **New results on diffraction from CDF**

Michele Gallinaro The Rockefeller University on behalf of the CDF collaboration

✓ diffractive structure function
 ✓ t-distribution
 ✓ exclusive processes

#### **Hadronic interactions**



#### Goal: understand the nature of the colorless exchange

### **Hadronic diffraction**

Small momentum transfer Elastic and diffractive processes  $\Rightarrow$  leading hadron emitted at small angle The exchange ("pomeron") is colorless

Michele Gallinaro - "New Results on Diffraction from CDF" - DIS 2006 - Apr. 2006

⇒ large <u>rapidity gap</u>

## **Run II diffractive program**



## **Diffractive dijets**



## **Restoring factorization**



The diffractive structure function measured on the proton side in events with a leading antiproton is NOT suppressed relative to predictions based on DDIS

⇒more results will be available soon



### **Kinematic Properties**



#### **Diffractive** structure function



## **SD/ND** ratio



### **Q<sup>2</sup> dependence**



⇒ Pomeron evolves as proton

#### **ξ: RPS vs calorimeter**



## **RPS dynamic alignment**



### t-distribution



fit t-distribution to a double exponential using:

$$F=0.9\cdot e^{b_1\cdot t}+0.1\cdot e^{b_2\cdot t}$$

⇒no diffraction 'dips' observed for |t|<1

#### t-slope vs Q<sup>2</sup>



 $\Rightarrow$  same slope over the region 0< Q<sup>2</sup> <4,500 GeV<sup>2</sup>

## t-distribution

1) measure absolute value:

- systematics under evaluation
- 2) diffraction minima:
  - > no minima for |t|<1
  - extend range at larger |t| values (soon)
- 3) Q<sup>2</sup> dependence:
  - $\succ$  slope at t=0 is independent of Q<sup>2</sup>

#### low luminosity run data currently being analyzed ⇒ more results soon

## **∆\\$** (pbar-dijets)



# **Exclusive Higgs**



✓ clean process
✓ exclusive bb suppressed

KMR: σ<sub>H</sub>(LHC)~3 fb, signal/bkg~1 (if ΔM<sub>miss</sub>=1 GeV) Bialas, Landshoff, Phys.Lett. B 256,540 (1991) Khoze, Martin, Ryskin, Eur. Phys. J. C23, 311 (2002); C25,391 (2002);C26,229 (2002) C. Royon, hep-ph/0308283 B. Cox, A. Pilkington, PRD 72, 094024 (2005)

Attractive Higgs discovery channel at the LHC

see more in the "Diffractive Higgs and LHC" session!



⇒much larger cross section

Goal:

measure exclusive production (if it exists)
 calibrate Higgs predictions at LHC

⇒ use it as "standard candle"

## **Exclusive Dijets in Run I**



theory predicts ~1 nb (Run I kinematics)

## **Dijet Mass Fraction**



⇒need to estimate the background in the signal region

## **Comparison Data/MC**



⇒ excess of events at high R<sub>jj</sub> is well described by the exclusive dijet production models (different assumptions do not change results)

## Heavy flavor exclusive dijets

Theory:  $J_z=0$  spin selection rule  $gg \rightarrow gg$  dominant contribution at LO  $gg \rightarrow q\overline{q}$  suppressed when  $M_{ii} >> m_q$ 

Experimental method: normalize R<sub>jj</sub> for qq to R<sub>jj</sub> for all jets ⇔look for event suppression at large R<sub>jj</sub>

Pros: -many systematics cancel out -good HF quarks id -small g mistag O(1%)

<u>Cons:</u> -heavy quark mass: contribution from exclusive b/c



## **b-tagged jet fraction**



## **Exclusive dijet production**



#### comparison of inclusive jet rate and heavy flavor ⇒ consistent with exclusive dijets

## **Exclusive** $\gamma\gamma$ production



QCD diagram same as pHpsmaller cross section than exclusive dijets

~40 events/fb<sup>-1</sup> with  $p_T(\gamma)$ >5 GeV/c,  $|\eta|$ <1.0

the effective luminosity must be considered since additional interactions "populate" gaps



Khoze, Kaidalov, Martin, Ryskin, Stirling, hep-ph/0507040

#### **Exclusive ee/**yy search





QED process: cross-check to exclusive  $\gamma\gamma$ 

✓ do not detect (anti)proton

✓ require 2 EM showers (E<sub>T</sub>>5 GeV, |η|<2)

✓ veto all calorimetry and BSCs except 2 EM showers

✓ L~530 pb<sup>-1</sup> delivered ( $L_{effective}$ =46 pb<sup>-1</sup>)

⇒19 events have 2 EM showers +"nothing" caveat: "nothing" above threshold

### **Exclusive** $\gamma\gamma$ search



⇒ 3 candidate events found background: 0.0 +0.2 events

 $\sigma_{\text{MEASURED}} = 0.14 + 0.14 \text{ (stat)} \pm 0.03 \text{ (sys) pb}$ 

good agreement with KMR:  $\sigma_{KMR} = 0.04 \pm (\times 2 - 3) pb$ 

 $\Rightarrow \sigma_{\rm H} \sim$  10 fb (if H exists) within a factor  $\sim$  2-3 , higher in MSSM





#### Exclusive ee search



control sample for  $\gamma\gamma$  search

 $\Rightarrow$  16 candidate events found background: 2.1  $^{+0.7}_{-0.3}$  events

 $\sigma_{\text{MEASURED}} = 1.6 + 0.5 - 0.3 \text{ (stat)} \pm 0.3 \text{ (sys) pb}$ 

good agreement with LPAIR:  $\sigma_{IPAIR} = 1.711 \pm 0.008 \ pb$ 





## Summary

#### diffractive structure function:

- ✓ confirm and extend Run I results
- $\checkmark$  Q<sup>2</sup> dependence pomeron evolves like proton

#### t-distribution of diffractive events:

✓ slope at t=0 is independent of  $Q^2$ 

✓ measure absolute value and larger |t| ⇒ soon

#### observed exclusive production:

vevents consistent with exclusive dijet production
 heavy flavor jets suppressed at large R<sub>jj</sub>
 first indication of exclusive γγ events

The End

### **Diffractive W**

Study diffractive W-boson production, and the partonic structure of the Pomeron by a comparison to the diffractive di-jet production

- •Run I: 8,246 W(ev) events PRL 78 (1997), 2698
- •R<sub>W</sub> (SD/ND)= 1.15 ± 0.51(stat) ± 0.20(syst) %



## Gap between jets



Work in progress: low luminosity run data being analyzed

#### ee candidate events



#### γγ candidate events



Michele Gallinaro - "New Results on Diffraction from CDF" - DIS 2006 - Apr. 2006

#### $\gamma\gamma$ : event multiplicity



#### ee: event multiplicity



## **Exclusive Dijet Events ?**











## **Run II detectors**





## **RPS tracking**

