Submitted to Phys. Lett. B [hep-ex/0603038]

he Universit

Diffractive photoproduction of ρ mesons with large momentum transfer at HERA Carl Gwilliam

Manchester/Liverpool University

On behalf of the H1 Collaboration

XIV International Workshop on Deep Inelastic Scattering Tsukuba, Japan • 19th – 24th April 2006

Diffractive Vector Meson Production at HERA

Proton dissociation dominates at large |t|

 $\begin{array}{lll} Q^2 & & \mbox{Virtuality of the } \gamma^{\star} & & \sim 0 < Q^2 < 100 \ {\rm GeV}^2 \\ W_{\gamma p} & & \mbox{CM energy of the } \gamma p \ {\rm system} & & 20 < W_{\gamma p} < 205 \ {\rm GeV} \\ t & & (4 \ {\rm momentum \ transfer \ at \ the \ p \ vertex})^2 & & \sim 0 < |t| < 30 \ {\rm GeV}^2 \\ V & & \mbox{Vector meson} & & \rho^0, \omega, \phi, J/\psi, \psi(2s), \Upsilon(1s) \end{array}$

 \Rightarrow Simultaneous probe of several different kinematical quantities

Elastic Vector Mesons in Photoproduction

Photoproduction cross section for elastic VM production (small $|t| \& Q^2$)

Light Vector Mesons (ρ, ω, ϕ) :

 \bullet Observed dependence goes as $\sigma \sim W^{0.22}$

 \Rightarrow Consistent with Regge soft IP expectation

Heavier Vector Mesons $(J/\psi, \psi(2s))$:

- Steeper rise in cross section is observed \Rightarrow Need something in addition = pert. QCD
- Break down of pomeron universality ⇒ VMs at HERA provide a test of soft-hard transition
- Similar behaviour with Q^2 what about |t|?

Perturbative QCD

Calculations require hard scale \Rightarrow possibilities are: Q^2 , M_V^2 , |t|

- 1. Emitted photon fluctuates into $q\bar{q}$ pair
- 2. Hard interaction of $q\bar{q}$ pair with proton
- \Rightarrow 2 gluon exchange (colour singlet) at LO
- 3. Form bound VM (non pert. meson WF)

Higher Order Exchange

- Summation of a perturbative series in $lpha_s$
- \Rightarrow Effective gluon ladder ("QCD Pomeron")
- Can be described by BFKL evolution in

the region $s \gg |t| \Rightarrow \sum_n \alpha_s^n \ln^n s/|t|$

Diffractive VM photoproduction at large |t| proposed as test of BFKL evolution (Forshaw *et al.*)

Models

Challenge is to simultaneously describe |t| distribution and helicity structure

Two gluon:

- Photon couples to chiral-even $q\bar{q}$ dipole so require $L_z = \pm 1$ onto γ direction
- Hard interaction modifies dipole direction and damps $L_z'=\pm 1$ on VM axis by $\sim \frac{1}{|t|}$
- Reduces prob. of transversely polarised
 VM and longitudinal production dominates

BUT

- Data indicate transverse VMs dominate
 ⇒ requires large chiral-odd coupling
- One way to accommodate this is to use the constituent quark mass $m = \frac{m_V}{2}$

[1] R. Enberg et al., JHEP 0309 (2003) 008 [hep-ph/0306232] [2] G. G. Poludniowski et al., JHEP 0312 (2003) 002 [hep-ph/0311017]

LL BFKL:

- Cures instabilities from the two-gluon prediction
- VM production factorised from hard interaction
 & uses set of meson light-cone wavefunctions

• Free parameters:

 $lpha_s^{BFKL}$: gluon couplings inside gluon ladder $\Lambda^2=m_v^2-\gamma t$: undefined energy scale

set according to "best fit" to previous data

Data Selection

 $\gamma + p
ightarrow
ho^0 + Y$ with $ho^0
ightarrow \pi^+\pi^-~({
m BR}pprox 100\%)$

Selection:

- 2000 data period $\Rightarrow \mathcal{L} = 20.1 \ \mathrm{pb}^{-1}$
- Two central tracks (pion candidates)
- No additional neutral clusters in LAr
- Electron detected in 44 m *e*-tagger

Kinematics:

- \bullet Photoproduction $Q^2 < 0.01 \ {\rm GeV^2}$
- Tagged electron $75 < W < 95 \, {
 m GeV}$
- |t| range $1.5 < |t| < 10.0 \ {\rm GeV^2}$
- Proton remnant mass $M_Y < 5~{
 m GeV}$

Number of selected events ≈ 2600

Monte Carlo Description

DIFFVM MC: Based on vector dominance (VDM) with a detailed description of p dissociation

Data and Monte Carlo are in good agreement (after tuning for t slope and SCHC violation)

Dependence on |t|

Fit:

• Approx. power-like behaviour expected at large $|t| \Rightarrow$ Data fitted with $A|t|^{-n}$:

 $n = 4.26 \pm 0.06 \text{ (stat.)}^{+0.06}_{-0.04} \text{(syst.)}$

Model:

- Two-gluon model is unable to describe t dependence using either a fixed or running strong coupling (α_s^{BFKL})
- In contrast, BFKL prediction provides a reasonable description of the data
- Steeper t dependence than for ZEUS: $n_{ZEUS} = 3.21 \pm 0.04 \text{ (stat.)} \pm 0.15 \text{ (syst.)}$ as a result of the differing M_Y ranges

Helicity Angles and Spin Density Matrix Elements

 Production & decay angular distributions
\Rightarrow 15 spin density matrix elements (SDME)
but only 3 accessible in photoproduction

• SDMEs depend bilinearly on the helicity amplitudes $\Rightarrow r_{kl}^{ij} \propto M_{\lambda_{VM}\lambda_{\gamma}} M_{\lambda'_{VM}\lambda'_{\gamma}}$

No helicity flip:	$M_{++} / M_{}$
Single flip:	M_{+0} / M_{-0}
Double flip:	M_{+-} / M_{-+}

- s-channel helicity conservation (SCHC)
 - = Vector meson retains photon helicity
 - \Rightarrow All 3 SDMEs predicted to be zero

Helicity Angles: $\cos heta^*$ and ϕ^*

• SDMEs extracted using 2-dimensional log-likelihood fit to angular decay dist.:

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta^* d \phi^*} = \frac{3}{4\pi} \left[\frac{1}{2} (1 - r_{00}^{04}) + \frac{1}{2} (3r_{00}^{04} - 1) \cos^2 \theta^* - \sqrt{2} \operatorname{Re}[r_{10}^{04}] \sin 2\theta^* \cos \phi^* - r_{1-1}^{04} \sin^2 \theta^* \cos 2\phi^* \right]$$

- $\bullet \cos \theta^*$ reasonably described by SCHC
- Flat ϕ^* behaviour clearly disfavoured \Rightarrow indicates a violation of SCHC (in contrast to results for heavier J/Ψ)
- Both the two-gluon and BFKL models predict a violation of SCHC but differ in size of longitudinal VM polarisation

Dependence of SDMEs on |t|

- Small r_{00}^{04} value (~ 5%) \Rightarrow transversely polarised ρ meson production dominates
- Two-gluon model hugely overestimates r_{00}^{04} but BFKL gives a good description
- Large finite value of r_{1-1}^{04} indicates a significant double-flip contribution \Rightarrow clear violation of SCHC in ρ production
- Both models give non-zero prediction with same sign as data
- Non-zero r_{10}^{04} confirms the presence of a single-flip helicity contribution
- Both models unable to describe r_{10}^{04} as predictions are too large and wrong sign (Sudakov suppression of large $q\bar{q}$ dipoles?)

Summary

Photoproduction of ho mesons measured at large |t|, up to $|t| = 10~{
m GeV^2}$

Dependence on |t|:

- The t distribution is well described by a power-like dependence ${\rm d}\sigma/{\rm d}|t|\sim |t|^{-n}$ \Rightarrow $n=4.26\pm0.06~({\rm stat.})^{+0.06}_{-0.04}({\rm syst.})$
- ullet Two-gluon models with fixed or running strong coupling fail to describe |t| dependence
- In contrast, BFKL model is able to provide a reasonable description of the |t| distribution

Helicity Structure:

- Clear evidence of SCHC violation with contributions from single and double helicity-flip
- Two-gluon model overestimates probability of longitudinally polarised ho production (r_{00}^{04})
- BFKL model able to describe r_{00}^{04} well, but the prediction for r_{1-1}^{04} is too negative and ${
 m Re}[r_{10}^{04}]$ has the wrong sign

Diffractive photoproduction of ρ mesons with large momentum transfer at HERA