DIS 2006, Tsukuba, Japan April 20-24, 2006 Diffraction & Vector Mesons Bloc 7: Higgs & LHC

Higgs Production and Transverse Imaging of the Proton in Exclusive Diffractive pp Scattering

> Charles Earl Hyde-Wright Old Dominion University Norfolk VA 23529 USA CHyde@odu.edu

L.Frankfurt, Ch.E.H.-W., M. Strikman, Ch.Weiss, in preparation

Diffractive Production and quark-gluon imaging

- Conjecture: $p + p \rightarrow p + gap + 'H' + gap + p$
 - Study properties of new heavy particles (Higgs...)
 - Create spatial image the quark-gluon structure of the projectiles
- Example of Deeply Virtual Compton Scattering (DVCS) $ep \rightarrow ep\gamma$

• $-q^2 = Q^2$: Virtuality defines spatial resolution

- $\xi = x_{Bj}/(2-x_{Bj})$ = skewness = difference of initial and final momentum fractions
 - $\xi = 0$: Densities; $\xi > 0$: Wigner functions
- $\Delta = (q q'), \qquad \Delta^2 = t \qquad \Delta_{\perp}^2 \approx t_{\min} t$
- Δ_{\perp} Fourier conjugate to *impact parameter*, **b**.

APRIL 2006

Idea of pp Diffractive Production

- $p_1+p_2 \rightarrow p_3 + gap + H + gap + p_4$
 - H = Higgs, di-jet, Upsilon, J/Ψ , di-hadron, di-lepton, di-photon...
- $M_{H^2} = \xi_1 \xi_2 s \ll s$: Phase space for rapidity gaps
- $M_H^2 >> \Lambda^2_{\rm QCD}$: Perturbative mechanism
- $t_1 = (p_3 p_1)^2 \approx -(\Delta_1)^2$ $t_2 = (p_4 p_2)^2 = -(\Delta_1)^2$
- Δ_{1,2}: Fourier Conjugate to impact parameters b_{1,2} of hard scattering process
 - pp impact parameter $\mathbf{b} = \mathbf{b}_2 \mathbf{b}_1$

Irreducible soft interactions:
Convolute hard and soft contributions to Δ_{1,2}
Measure/compute soft interaction effects?
Does hard scattering measure properties of ground state or of soft collisional excited state?

Elastic Scattering Amplitude T_{El} , for \perp -Momentum Transfer Δ : Elastic scattering = diffraction pattern of **b**-dependent absorption $i\Gamma(\mathbf{b},s)$. $T_{El}(\Delta,s) = [is/(4\pi)] \int d^2\mathbf{b} \ e^{i\Delta \cdot \mathbf{b}} \Gamma(\mathbf{b},s)$

Center of Proton is Black: Black Disk Limit (BDL) $\Gamma(0,s) = 1$ (s > Tevatron) \rightarrow Stabilizes numerical estimates

APRIL 2006

Elastic, Inelastic, and Total Scattering Cross Sections

Impact Parameter Representation:

$$d^{2}\sigma_{\mathrm{El}}(s) = \frac{d^{2}\Delta}{(2\pi)^{2}} \left| \int d^{2}\mathbf{b}e^{-i\mathbf{b}\cdot\Delta}\Gamma(\mathbf{b};s) \right|^{2}$$
$$\sigma_{\mathrm{El}}(s)$$
$$\sigma_{\mathrm{Tot}}(s)$$
$$\sigma_{\mathrm{Inel}}(s) = \int d^{2}\mathbf{b} \times \begin{cases} |\Gamma(\mathbf{b};s)|^{2} \\ 2\Re[\Gamma(\mathbf{b};s)] \\ [1-|l-\Gamma(\mathbf{b};s)|^{2} \end{bmatrix}$$

 |1-Γ(b;s)|² = Probability of no inelastic scattering at impact parameter b.

pp Total Cross Sections

APRIL 2006

Behavior of $\sigma_{Total} \& \Gamma(\mathbf{b};s)$

- Gaussian model:
 - $\Gamma(\mathbf{b},s) = exp[-\mathbf{b}^2/B(s)].$
 - $\sigma_{\text{Total}} = 4\pi B(s)$
- Regge Fit
 - $\sigma_{\text{Total}} \rightarrow \sigma_0 (s/s_0)^{0.08} + \dots$
 - $B(s) = B_0(s/s_0)^{0.08}$.
 - $B = 21.8 \ GeV^{-2}$ $s = (14 \ TeV)^2$: LHC.
- Γ(b,s) is a slowly varying function of s at high energy.

[†] M. Islam, *et al*, PLA**18**, 743, 2003. Model of Kaidalov, Khoze, Martin, and Ryskin gives similar results

Hard Scattering Kinematics, s=(P₁+P₂)²

- $k_1 \approx x_1 P_1 + \mathbf{k}_{1\perp}$
- $k_2 \approx x_2 P_2 + \mathbf{k}_{2\perp}$
- $k = (x_1 \xi_1)P_1 + \mathbf{k}_\perp (x_2 \xi_2)P_2 \approx \mathbf{k}_\perp$
- Suppression of gluon bremsstrahlung: Loop Virtuality: $k_1^2 \sim k_2^2 \sim k^2 \sim Q^2$.

Kinematic Hierarchy: $\Lambda^{2}_{QCD} << Q^{2} << M^{2}_{H} << s$ $x_{1}x_{2}s \approx M^{2}_{H}$ $(x_{i} - \xi_{i}) << x_{i} \approx \xi_{i} << 1$

APRIL 2006

Hard Scattering Amplitude: Unintegrated Generalized Parton distributions

- Perturbative kernel for $gluon + gluon \rightarrow H$
- Soft matrix elements of projectiles
 - Gluon +Proton -> Gluon +Proton
 - Compton amplitude for gluons of virtuality Q^2
 - *Virtuality Q*²: evolution local in impact parameter space

Factorization of Hard & Soft Scattering

- $T_{\text{Diff}} = \langle p_3 p_4 / S_{\text{Soft}} (\infty, 0) V_{\text{Hard}} (H) S_{\text{Soft}} (0, -\infty) / p_1 p_2 \rangle$
 - V_{Hard} :
 - Diagonal in impact parameter
 - Time scale = $R/\gamma \ll R$ = Time scale of S_{Soft}
 - Does not mix Fock sub-spaces in diffractive production.
 - Conserves parton helicity
 - [$V_{
 m Hard}$, $S_{
 m Soft}$] pprox 0
 - Broken by transverse correlations of hard and soft partons
 - V_{Hard} and S_{Soft} populate orthogonal inelastic intermediate states. Excitation of low mass N* by S_{Soft} suppressed at LHC energies (Goulianos hep-ph/0510035).

$$T_{\text{Diff}} = \langle P_3 P_4 | S_{\text{Soft}}(\infty, -\infty) | X \rangle \langle X | V_{\text{Hard}}(H) | P_1 P_2 \rangle$$

 $T_{\text{Diff}} \rightarrow \langle P_3 P_4 | S_{\text{Elastic}}(\infty, -\infty) | p' p'' \rangle \langle p' p'' | V_{\text{Hard}}(H) | P_1 P_2 \rangle$

Scattering Amplitude in Momentum Transfer Space

Scattering Amplitude in Impact Parameter Space

• GPD h_g in impact parameter space.

$$h(x,\xi,\rho) = \int \frac{d^2 \Delta}{(2\pi)^2} e^{i\Delta \cdot \rho} H(x,\xi,t=-\Delta^2)$$

• Scattering amplitude $T_{Diff}(\xi_1, \mathbf{p}_3, \xi_2, \mathbf{p}_4) = \int d^2 \rho_1 \int d^2 \rho_2 e^{-i\left[\rho_1 \cdot \mathbf{p}_3 + \rho_2 \cdot \mathbf{p}_4\right]}$

 $\kappa(\xi_1,\xi_2)h(x_1,\xi_1,\rho_1,Q^2)h(x_2,\xi_2,\rho_2,Q^2) \\ \left[1 - \Gamma(\rho_2 - \rho_1,s)\right]$

---- Hard Scattering

"Beam-pipe view": One projectile coming towards us, one moving away.

Gaussian Model

$$H_{g}(x,\xi,\Delta^{2}) = H_{0}(x,\xi)e^{-\Delta^{2}B_{g}(\xi)}$$
$$T_{El} = \int d^{2}\mathbf{b}e^{-i\Delta\cdot\mathbf{b}}\Gamma(\mathbf{b},s)$$
$$\Gamma(\mathbf{b},s) = e^{-\mathbf{b}^{2}/B}$$

J/Ψ Photoproduction, $B_g \approx 3.24 \ GeV^{-2} << B\approx 22 \ GeV^{-2}$ Transverse size $\sqrt{B_g}$ of 'hard' gluons is smaller than hadronic radius \sqrt{B} . $GPD(x\approx 0.05, \ Q_0^2 \approx 3 \ GeV^2)$ dominates determination of $GPD(x=0.01, \ Q^2 \approx 20 \ GeV^2)$ $M_H = 140 \ GeV$ @ LHC

$$T_{\text{Diff}} = e^{-\left[B_g(\xi_1)\mathbf{p}_3^2 + B_g(\xi_2)\mathbf{p}_4^2\right]/2} \left\{ 1 - \frac{B}{B_{Tot}} e^{\left[B_g(\xi_1)\mathbf{p}_3 + B_g(\xi_2)\mathbf{p}_4\right]^2/[2B_{Tot}]} \right\}$$

 $B_{Tot} = B_g(\xi_1) + B_g(\xi_2) + B$

APRIL 2006

Rapidity Gap Survival Probability: S²

- S² not an observable, but a useful statistic
 - σ_{DD} = total Double Diffractive cross section.

$$\sigma_{DD}(\xi_{1},\xi_{2}) \propto \int \frac{d^{2}\mathbf{p}_{3\perp}}{(2\pi)^{2}} \int \frac{d^{2}\mathbf{p}_{4\perp}}{(2\pi)^{2}} |T_{\text{Diff}}(\xi_{1},\mathbf{p}_{3\perp})|^{2}$$
$$\propto \int d^{2}\rho_{1} \int d^{2}\rho_{2} h_{g}^{2}(\xi_{1},\rho_{1})h_{g}^{2}(\xi_{2},\rho_{2})|I-\Gamma(\rho_{2}-\rho_{1},s)|^{2}$$

$$S^{2} = \frac{\sigma_{DD}(\text{Full})}{\sigma_{DD}(\text{no_soft}:\Gamma=0)}$$

$$= \int d^{2}\mathbf{b}P_{hard}(\mathbf{b})|I-\Gamma(\mathbf{b},s)|^{2}$$

$$P_{hard}(\mathbf{b}) = \int d^{2}\rho_{1}\int d^{2}\rho_{2}\delta^{(2)}(\mathbf{b}+\rho_{1}-\rho_{2}) \left[\frac{h_{g}^{2}(\xi_{1},\rho_{1})}{\int d^{2}\rho'h_{g}^{2}(\xi_{1},\rho')}\right] \left[\frac{h_{g}^{2}(\xi_{2},\rho_{2})}{\int d^{2}\rho'h_{g}^{2}(\xi_{1},\rho')}\right]$$
APRIL 2006 CEH-W DIS2006 15

S²

Surface Peaking of Double Diffraction

Rapidity Gap Survival probability *S*² *vs s*.

Diffractive images in transverse plane ($p_{3y}=0$) Optical analog: $\begin{cases} H(,\Delta) = \text{ fourier transform of Diffraction Grating,} \\ [1-\Gamma(\rho 2-\rho 1)] = \text{ single slit profile of each grating} \end{cases}$

 $p_{3x} = 0$

 $p_{3x} = 0.5 \,\mathrm{GeV}$

 $p_{3x} = 1 \,\mathrm{GeV}$

2

17

p_{4x} [GeV]

2

APRIL 2006

Azimuthal Distribution of p₄ vs p₃

- $\phi = \phi_4 \phi_3$.
 - 0⁺ production (g^{μν}) maximizes **p**₃·**p**₄
 - φ = π: both projectiles
 recoil in same direction
 - 0⁻ production (ε^{μνρσ}) maximizes E₁ **p**₂·(**p**₃×**p**₄)
 - φ=π/2: projectiles recoil at right angles.

0⁺ **production:**

140 GeV Higgs at 7 TeV

Sensitivity to form of Gluon Distribution Hg

Exponential and Dipole forms

$$H_g(x,\xi,-\Delta^2) = \begin{cases} e^{-\Delta^2 B_g(\xi)/2} \\ \\ 1 \\ \hline \left[1+\Delta^2/m_g^2\right]^2 \end{cases}$$

APRIL 2006

Rapidity Dependence

- Rapidity y of Higgs
 - $\xi_0 = [\xi_1 \ \xi_2 \]^{1/2} = M_H / \sqrt{s}$
 - $\xi_{1,2} = \xi_0 \ e^{\pm y}$
 - $B_g(\xi_{1,2}) \approx B_g(\xi_0) + \alpha_g' \ln[\xi_{1,2}/\xi_0]$
 - $B_g(\xi_{1,2}) \approx B_g(\xi_0) \pm y\alpha_g$
- Forward backward asymmetry depends only on α_g '

Correlations of soft and hard partons in transverse plane

- Find hard partons at impact parameters ρ₁ in projectile 1 and ρ₂ in projectile 2.
- Local density of soft partons in each projectile near $\rho_{1,2}$ is greater than average density in each projectile.
- Examples:
 - Deuteron-deuteron scattering
 - Pion-cloud for $\xi < m_{\pi}/M \rightarrow 6\%$ reduction of S^2 .
 - Constituent Quarks: Size = (600 MeV)⁻¹ from Instantons

Previous estimate of S² is upper bound

Conclusions:

Rapidity Gap Survival in Central Hard Diffraction

- Generalized Parton Distributions:
 - Unifying Concept for Hard Exclusive Reactions: *ep*, *pp*, ...
- Impact Parameter representation gives physical picture
 - Quantum Numbers (parity) of new particles
 - [Approximate] factorization of hard & soft interactions
 - Transverse-spatial imaging of [quark &] gluon distributions
 - Model independent Parameterization of Soft Interactions
 - Black Disk Limit at b=0, s≥Tevatron highly constrains numerical estimates
 - P_T distributions (spatial distribution of gluons) Depend on Rapidity
- Correlations of Hard and Soft partons in impact parameter
 - Complicates separation of hard and soft scattering
 - Examples: Pion-cloud, constituent-quarks, instantons: Observable effects!
 - Bound on Rapidity Gap Survival: $S^2 \le 0.03$.
- On to LHC420!

APRIL 2006

• Example: $p=7 \ TeV$ $M_H = 100 \ GeV$ $x \approx 10^{-2} << \tilde{x} << 1$

APRIL 2006

• *Virtuality* Q^2 : evolution local in impact parameter space,

Effect of Rapidity Gap Survival Probability

- $|T_{diff}|^2 = Full$ Diffractive calculation
- $|H_g|^4 = |T_{diff}|^2$ with $S_{soft} = 1$ ($\Gamma = 0$, No soft absorption)

$$\mathbf{r} = (\mathbf{p}_3 - \mathbf{p}_4)$$
$$\mathbf{P} = (\mathbf{p}_3 + \mathbf{p}_4)/2$$

APRIL 2006

