New Results on Spin Density Matrix Elements for $\boldsymbol{\rho}^{0}$ at Hermes

Bohdan Marianski

Andrzej Soltan Institute for Nuclear Studies,Poland
On behalf of the Hermes Collaboration

XIV International Workshop on Deep Inelastic Scattering Tsukuba Japan
April 20th, 2006

Outline

- Definition of Spin Density Matrix Elements (SDMEs)
- Angular Distribution of Vector Meson Decay
- The Hermes Data
- Method of SDMEs extraction
- 23 Extracted SDMEs
- Kinematical dependences of the SDMEs
- Summary

Exclusive, Diffractive Electroproduction of $\boldsymbol{\rho}^{0}$

$$
\mathbf{e}+\mathbf{N} \rightarrow \mathbf{e}^{\prime}+\mathbf{N}+\boldsymbol{\rho}^{\mathbf{0}}
$$

$$
\begin{aligned}
& Q^{2}=-q^{2}=-\left(k-k^{\prime}\right)^{2} \\
& W^{2}=(q+p)^{2} \\
& t=(q+v)^{2}
\end{aligned}
$$

- Two gluon exchange mechanism at higher energies
- Quark exchange mechanism at intermediate energies
- Spin structure of the ρ^{0} production
(How the helicity of the of the ρ^{0} meson is related to the helicity of the virtual photon)
- Spin Density Matrix Elements SDMEs

Spin-Density Matrix of the Vector Meson

- $\rho(\mathrm{V})=\frac{1}{2} \mathrm{~T} \rho(\gamma) \mathrm{T}^{+} \begin{aligned} & - \text { Spin-density matrix of the vector meson } \rho(\mathrm{V}) \text { in } \\ & \text { terms of the photon spin density matrix } \rho(\gamma) \text { and }\end{aligned}$ helicity amplitude T
- $\rho_{\lambda_{v} \lambda_{v^{\prime}}}^{\alpha}=\frac{1}{2 N_{\alpha}} \sum_{\lambda_{r} \lambda_{\gamma}} T_{\lambda_{v} \lambda_{\gamma}} \Sigma_{\lambda_{r} \lambda_{r}^{\prime} \lambda_{r}}^{\alpha} T_{\lambda_{v} \lambda_{r}^{\prime} \lambda_{r}^{\prime}}^{*}-\begin{aligned} & \text { spin-density matrix elements of } \\ & \text { the vector meson }\end{aligned}$
$T_{\lambda_{\mathrm{V}} \lambda_{N}^{\prime} \cdot \lambda_{\gamma} \lambda_{\mathrm{N}}}=\left\langle\lambda_{\mathrm{V}} \lambda_{N}^{\prime}\right| \mathrm{J}^{(\mathrm{em})} e^{\left(\lambda_{\gamma}\right)}\left|\lambda_{\mathrm{N}}\right\rangle \quad$ - helicity amplitudes
where $\lambda_{\mathrm{V}}, \lambda_{\gamma}, \lambda_{\mathrm{N}}-$ helicity of the vector meson, photon and proton
$\mathrm{J}^{(\mathrm{em})}$ - electromagnetic current, $\mathrm{e}^{(\lambda)}$ - photon polarization vector
$\lambda_{\gamma}=0$ - longitudinal polarization, $\lambda_{\gamma}= \pm 1-$ transverse polarization
$\sum_{\lambda_{\gamma} \lambda_{\gamma}^{\prime}}^{\alpha}-\begin{aligned} & (\alpha=0, \ldots 8) \text { nine hermitian matrices representing states of photon } \\ & \text { polarization }\end{aligned}$ $\alpha=0$ - unpolarized transverse photon $\alpha=1,2$ - linear polarization $\alpha=3$ - circularly polarized photon $\quad \alpha=4-$ longitudinal photon $\alpha=5,6,7,8-$ longitudinal- transverse interference terms

Spin Density Matrix Elements (SDMEs)

- It is not possible to separate contributions from longitudinal and transverse photon at constant beam energy.
- We measure SDMEs - $\mathrm{r}_{\lambda \lambda_{\mathrm{v}}}^{\alpha}$

$$
\begin{aligned}
& \mathrm{r}_{\lambda_{V} \lambda_{V}^{\prime}}^{04}=\frac{\rho_{\lambda_{V} i_{V}}^{0}+\varepsilon \mathrm{R} \rho_{\lambda_{V} i_{V}^{\prime}}^{4}}{1+\varepsilon \mathrm{R}} \quad \mathrm{R}=\frac{\sigma_{L}}{\sigma_{T}} \quad \varepsilon-\text { polarization parameter } \\
& \mathrm{r}_{\lambda_{V} \lambda_{V}^{\prime}}^{\alpha}=\frac{\rho_{\lambda_{V} \lambda_{V}}^{a}}{1+\varepsilon \mathrm{R}} \quad \alpha=1,2,3 \\
& \mathrm{r}_{\lambda_{V} \lambda_{V}^{\prime}}^{\alpha}=\sqrt{R} \frac{\rho_{\lambda_{V} \lambda_{V}}^{a}}{1+\varepsilon \mathrm{R}} \quad \alpha=5,6,7,8
\end{aligned}
$$

- SCHC - s-channel helicity conservation
helicity of the virtual photon $=$ helicity of the vector meson

$$
\begin{aligned}
& \mathrm{T}_{01}=\mathrm{T}_{10}=\mathrm{T}_{-10}=\mathrm{T}_{0-1}=\mathrm{T}_{-11}=\mathrm{T}_{1-1}=0 \\
& \mathrm{~T}_{00} \neq 0, \mathrm{~T}_{11} \neq 0 \mathrm{~T}_{-1-1} \neq 0 \\
& r_{00}^{04}, \operatorname{Re}\left\{r_{1-1}^{1}\right\}, \operatorname{Im}\left\{r_{1-1}^{2}\right\}, \operatorname{Re}\left\{r_{10}^{5}\right\}, \operatorname{Im}\left\{r_{10}^{6}\right\}, \operatorname{Im}\left\{r_{10}^{7}\right\}, \operatorname{Re}\left\{r_{10}^{8}\right\} \neq 0
\end{aligned}
$$

- NPE - Natural Parity Exchange process dominance the exchange particle have quantum numbers $\left(\mathrm{J}^{\mathrm{P}}=0^{+}, 1^{-}, 2^{+} \ldots\right)$

$$
\mathrm{T}_{00}, \mathrm{~T}_{11}=\mathrm{T}_{-1-1}, \mathrm{~T}_{01}=-\mathrm{T}_{0-1}, \mathrm{~T}_{10}=-\mathrm{T}_{-10}, \mathrm{~T}_{1-1}=\mathrm{T}_{-11}
$$

Decay Angles Definition

$\gamma^{*} \mathrm{p}$ - center - of momentum frame Φ - the azimuthal production angle of ρ^{0} meson

ρ^{0} - rest frame
θ, φ - polar and azimuthal decay angle of the meson π^{+}relative to the ρ^{0} spin quantization axis, which is along the direction oposite the direction of the recoiling target -p '

Decay Angular Distribution in terms of SDMEs

$-\epsilon \sin 2 \Phi\left(\sqrt{2} \operatorname{Im}\left(r_{10}^{2}\right) \sin ^{2} \Theta \sin \phi+\operatorname{Im}\left(r_{1-1}^{2}\right) \sin 2 \Theta \sin 2 \phi\right)$
$+\sqrt{2 \epsilon(1+\epsilon)} \cos \Phi\left(r_{11}^{5} \sin ^{2} \Theta+r_{00}^{5} \cos ^{2} \Theta-\sqrt{2} R e r_{10}^{5} \sin 2 \Theta \cos \phi-\right.$ $\left.r_{1-1}^{5} \sin ^{2} \Theta \cos 2 \phi\right)$
$\left.+\sqrt{2 \epsilon(1+\epsilon)} \sin \Phi\left(\sqrt{2} \operatorname{Im}\left(r_{10}^{6}\right) \sin 2 \Theta \sin \phi+\operatorname{Im}\left(r_{1-1}^{6}\right) \sin ^{2} \Theta \sin 2 \phi\right)\right]$
$W^{\text {long.pol. } .}(\cos \Theta, \phi, \Phi)=\frac{3}{4 \pi} P_{\text {beam }}[$
$\sqrt{1-\epsilon^{2}}\left(\sqrt{2} \operatorname{Im}\left(r_{10}^{3}\right) \sin 2 \Theta \sin \phi+I m\left(r_{1-1}^{3}\right) \sin ^{2} \Theta \sin 2 \phi\right)$
$+\sqrt{2 \epsilon(1-\epsilon)} \cos \Phi\left(\sqrt{2} \operatorname{Im}\left(r_{10}^{7}\right) \sin 2 \Theta \sin \phi+\operatorname{Im}\left(r_{1-1}^{7}\right) \sin ^{2} \Theta \sin 2 \phi\right)$
$+\sqrt{2 \epsilon(1-\epsilon)} \sin \Phi\left(r_{11}^{8} \sin ^{2} \Theta+r_{00}^{8} \cos ^{2} \Theta-\sqrt{2} R e\left(r_{10}^{8}\right) \sin 2 \Theta\right.$
$\left.\left.\cos \phi-r_{1-1}^{8} \sin ^{2} \Theta \cos 2 \phi\right)\right]()$

15 unpolarized SDMEs

8 polarized SDMEs

Information about Hermes Experimental Data

- Polarized positron (electron) beam of energy $\mathrm{E}=27.6 \mathrm{GeV}$
- The average lepton beam polarization was 0.53 for both positive and negative beam helicities
- Targets: Hydrogen, Deuterium
- Data collected in years 1996-2000

Selection of Diffractive Exlusive ρ^{0} Events

- Event has only 3 tracks, scattered lepton and two pions $\pi+\pi-$
- The ρ^{0} meson is selected by mass constraints

$$
0.6<\mathrm{M}_{\pi+\pi-}<1.0 \mathrm{GeV}
$$

and veto constraints $\mathrm{M}_{\mathrm{K}+\mathrm{K}_{-}}>1.06 \mathrm{GeV}$

- Diffractive events were selected by requiring $-\mathrm{t}^{\prime}=\mathrm{t}-\mathrm{t}_{\text {min }}<0.6 \mathrm{GeV}$
- Exlusive events $-1<\delta E=\frac{M_{x}^{2}-M_{\text {targ }}^{2}}{2 \mathrm{M}_{\text {targ }}}<0.6 \mathrm{GeV}$
- 9600 - events H, 16000 - events D

δ E distributions for exlusive diffractive ρ^{0} production for different kinematical bins (circles), compared to SIDIS background calculated by PYTHIA MC (histogram)

Extraction of SDMEs

- SDMEs were determined by minimizing the difference between 3-dimesional matrix of data and a sample of MC events.
(1) 3-dimensional matrix of data in variables $(\cos (\theta), \varphi, \Phi)$ binned in $(8,8,8)$ bins
(2) 3-dimensional matrix of background events
(3) 3-dimensional matrix of MC events generated with uniform angular distribution, reweighted with angular distribution function $\mathrm{W}(\cos (\theta), \varphi, \Phi)$ which depends on the SDMEs
(1) - (2) was fitted by (3) with a binned Maximum Likelihood Method where SDMEs were treated as free parameters.

Fitted Angular Distribution

$\psi=\varphi-\Phi$

- Closed circles represent measured data
- MC distribution fitted to the data
- isotropically genereted events used as an input for the fits

23 Unpolarized and Polarized SDME on Hydrogen and Deuterium

The \mathbf{Q}^{2} - dependence of the $\mathbf{1 5}$ upolarized SDMEs

The -t'- dependence of the $\mathbf{1 5}$ unpolarized SDME

Test of NPE dominance

$$
1-r_{00}^{04}+2 r_{1-1}^{04}-2 r_{11}^{1}-2 r_{1-1}^{1}=0 \quad \text { For NPE }
$$

Longitudinal-to-Transverse Cross-Section Ratio

$$
\mathrm{R}_{\rho}^{\text {SCHC }}=\frac{1}{\varepsilon} \times \frac{\mathrm{r}_{00}^{04}}{1-\mathrm{r}_{00}^{04}}
$$

Summary

$\square 23$ SDMEs were obtained with the Likelihood method for ρ^{0} production on proton and deuteron targets.
\square No significant deviation is seen between the SDMEs from proton and deuteron data and their kinematic dependences.
\square Violation of SCHC was shown for non-zero values of several SDMEs on hydrogen and deuterium.

- 15 unpolarized SDMEs were extracted for four Q^{2} bins and four $-t$ ' bins for proton and deuteron. Several clean kinematic dependences of SDMEs on Q^{2} and -t' are observed.
\square Test of Natural Parity Exchange was performed for different kinematic bins. An indication of unnatural parity exchange amplitudes is seen in the proton data.
$\square \mathrm{R}^{\text {SCHC }}$ was obtained for four Q^{2} bins under the assumption of SCHC

