

A New Measurement of Exclusive ρ° Photoproduction at HERA

Jan Olsson, DESY for the H1 Collaboration

Kinematic Variables

 $Q^2 < 4 \text{ GeV}^2$, electron not detected $\langle Q^2 \rangle = 0.01 \text{ GeV}^2$

$$W = \sqrt{2E_p(E_
ho - p_{oldsymbol{z},
ho})}$$

20 < W < 90 GeV

 $t = -p_{t,\rho}^2 \qquad |t| < 3 \text{ GeV}^2$

Exclusive
$$\rho^{\circ}$$
 Photoproduction
 $e \xrightarrow{-Q^2} \sqrt{\gamma^*} \qquad p \xrightarrow{\pi^+} \sqrt{\eta^+} \qquad p, Y$

- ρ[°] Photoproduction:
 a typical soft hadronic process
- Well described with VDM and Regge phenomenology

1

 $M_Y: (M_Y^2 + Q^2)/(W^2 + Q^2) < 0.01$ Cross Section Definition This reaction has been measured many times already. Why do we need a new measurement?

Motivation

Last measurement from H1:

 ρ° Photoproduction at low |t|, 1993 data, 358 events, 20 nb⁻¹!

Time for a New Measurement!

2

Motivation, cont.

 $d\sigma/dt(\gamma p \rightarrow \rho^{o}p)$

ZEUS analysis from 1999

Combine HERA measurements with fixed target data at low W, extract the Pomeron Trajectory:

$$\frac{\mathrm{d}\sigma^{\gamma \mathrm{p}}}{\mathrm{d}t} = \frac{\mathrm{d}\sigma^{\gamma \mathrm{p}}}{\mathrm{d}t}\Big|_{W_0} \left(\frac{W}{W_0}\right)^{4[\alpha(t)-1]}$$

$$lpha(t) = lpha_\circ + lpha' \cdot t$$

3

Motivation, cont.

Surprise: $\alpha' = 0.125 \pm 0.038$ GeV⁻²

The extracted Pomeron trajectory has a slope, which is different from the canonical value of 0.25 GeV⁻² (Donnachie and Landshoff, 1992)

In an earlier analysis (ZEUS 97) the value $0.23 \pm 0.15 \stackrel{+0.10}{_{-0.07}}$ GeV⁻² was derived, using the low-t data at <W> = 72 GeV and the W-dependence $e^{b(W)t}$ $b(W)=b(W_{\circ})+2\alpha'(W/W_{\circ})^{2}$

Warning (ZEUS 1995):

"There are however differences in the results obtained by individual experiments; these differences at least in part reflect the ambiguity in the definition of the rho production cross section due to the finite width of the rho.

The comparison between experiments ...should thus be taken with caution."

ZEUS, analysis from 1999

Clearly Needed: Measure the Pomeron trajectory within one experiment! However, this requires very large statistics

HERA-II data 2005

H1 Fast Track Trigger, FTT

- Trigger threshold: $p_t > 100 \text{ MeV}$
- Allows selection on nr. of tracks
- Allows selection on total charge
- High efficiency, determined with DIS triggered Monitor sample

For this analysis:

- Clean 2-prong trigger, maximum 3 tracks
- Total charge between -1 and +1

5

Event Selection

570 nb⁻¹ collected in 2005 1 Million triggered events, 267785 selected ρ° candidates

- Vertex within 25cm of nominal Int.Point
- 2 tracks, opposite charge
- track $p_t > 200 \text{ MeV}$
- Theta of track in range $20^{\circ} 160^{\circ}$
- No electron detected in calorimeters
- Unassociated calorimeter energy <500 MeV

DIFFVM MC Generator:

- Monte Carlo simulation of elastic and p-dissociative production of VM
- ullet Produces events at all Q^2 and M_Y
- Signal events restricted to the kinematic region
 - $Q^2 < 4~{
 m GeV^2}~,~~(M_Y^2\!+\!Q^2)/(W^2\!+\!Q^2)~<~0.01$

otherwise treated as background

6

×10³

Backgrounds

Mainly from other exclusive Vector Meson production:

$$egin{aligned} \phi &
ightarrow K^+K^- \ \omega &
ightarrow \pi^+\pi^- \ \omega, \phi &
ightarrow \pi^+\pi^-\pi^{\circ} \end{aligned}$$

Rho' background:

 $ho'
ightarrow \pi^+\pi^-\pi^\circ\pi^\circ$

- $\rho' \to \pi^+ \pi^-$ seen in the data <0.5% of $\rho^\circ \to \pi^+ \pi^-$
- Crystal Barrel: $BR(\rho' \to 4\pi)/BR(\rho' \to 2\pi) = 0.37 \pm 0.10 \ (\rho'(1450))$ $BR(\rho' \to 4\pi)/BR(\rho' \to 2\pi) = 0.16 \pm 0.04 \ (\rho'(1700))$
- $ho'
 ightarrow 4\pi$ dominated by $ho'
 ightarrow 2\pi^+ 2\pi^-$

Altogether, <2% background from ρ' , ω and ϕ => normalisation uncertainty in the final result

Binning in W and t

- 12 bins in |t|, 0-3 GeV²
 5 to 10 bins in W, depending on t-value
- 80 "W/t"-bins

• Average total efficiency: 20-35%

Corrected Mass Distribution

- Mass distribution distorted, due to non-resonant $\pi^+\pi^-$ production
- Fit with rel. Breit-Wigner, including a skewing factor (Ross-Stodolsky)

$$rac{{
m d}N}{{
m d}m_{\pi\pi}} = N_0 rac{m_
ho \, \Gamma_
ho \, m_{\pi\pi}}{(m_
ho^2 - m_{\pi\pi}^2)^2 + m_
ho^2 \Gamma_
ho^2} \left(rac{m_
ho}{m_{\pi\pi}}
ight)^n + B
onumber \ \Gamma_
ho = \Gamma_{
ho,0} \, \left(rac{m_{\pi\pi}^2 - 4m_{\pi}^2}{m_
ho^2 - 4m_{\pi}^2}
ight)^rac{3}{2} \, rac{m_
ho}{m_{\pi\pi}}$$

- In each "W/t"-bin, perform the fit and fix the mass and width of ρ[°] to the average values as obtained from fits in all W/t bins
 Average : m_ρ = 766.4MeV Γ_ρ = 145MeV
 PDG : m_{ρ,0} = 768.5MeV Γ_{ρ,0} = 150±3MeV
- N_{cor} gives the number ρ° in each bin, after integrating over the BW

$$N_{
m cor} = N_0 \int \limits_{m_{\pi\pi}=2m_{\pi}}^{m_{
ho,0}+5\Gamma_{
ho,0}} rac{m_{
ho}\,\Gamma_{
ho}\,m_{\pi\pi}}{(m_{
ho}^2-m_{\pi\pi}^2)^2+m_{
ho}^2\Gamma_{
ho}^2} {
m d}m_{\pi\pi}$$

Cross Sections

Obtained using the Ross-Stodolsky fit results

Alternative fit, using the Söding model

$$rac{{
m d}N}{{
m d}m_{\pi\pi}}=rac{N_0m_
ho\,\Gamma_
ho\,m_{\pi\pi}+I(m_
ho^2-m_{\pi\pi}^2)}{(m_
ho^2-m_{\pi\pi}^2)^2+m_
ho^2\Gamma_
ho^2}+B$$

Ratio of Cross Sections shows: results fully compatible

The Diffractive ρ° Photoproduction Cross Section

Cross Sections include both elastic and proton-dissociative components!

DIS 2006, Tsukuba, Japan, April 20-24, 2004

Elastic and p-Dissociative Cross Sections

To separate the Elastic from the proton-Dissociative events, use additional subdetectors in the forward direction:

Forward Muon Detector, FMD

Forward Tagging Scintillators, FTS use FTS26, FTS28

- The p-dissociative system generates secondary particles, which cause hits in these detectors
- Also elastic protons at large |t| can generate secondaries
- Use MC simulation and real data to determine the elastic and p-dissociative fractions in each W/t bin
- ϵ_{pd} , ϵ_{el} are the tagging efficiencies (depend on t)

$$f_{ ext{tag}} = rac{N_{ ext{tag}}}{N_{ ext{tag}} + N_{ ext{untag}}}$$

 $N_{
m el} = N_{
m cor} rac{\epsilon_{
m pd} - f_{
m tag}}{\epsilon_{
m pd} - \epsilon_{
m el}}$

The Elastic ρ° Photoproduction Cross section

Good agreement with previous results from H1, ZEUS and OMEGA Note: Extrapolation of H1 fit ↑

H1 PRELIMINARY

Elastic and p-Dissociative Cross Sections

H1 PRELIMINARY

H1 PRELIMINARY

Using only H1 data, fit the form: $\frac{\mathrm{d}\sigma^{\gamma \mathrm{p}}}{\mathrm{d}t} = \frac{\mathrm{d}\sigma^{\gamma \mathrm{p}}}{\mathrm{d}t}\Big|_{W_0} \left(\frac{W}{W_0}\right)^{4[\alpha(t)-1]}$

p-dissociative cross section in range $(M_V^2\!+\!Q^2)/(W^2\!+\!Q^2) \,<\, 0.01$

Pomeron Trajectory

Fit to the data, assuming linear form $lpha(t)=lpha_\circ+lpha'\cdot t$

Excellent agreement with the previous result, which used ZEUS data and data at lower W

 α' significantly smaller than the canonical value 0.25 GeV⁻², derived from other elastic data. (Donnachie and Landshoff, 1992)

H1 PRELIMINARY

$$lpha_{\mathbf{P}}\left(t
ight) = \left(1.093 \pm 0.003 \; {}^{+0.008}_{-0.007}
ight) \, + \, \left(0.116 \pm 0.027 \; {}^{+0.036}_{-0.046}
ight) \, \mathrm{GeV}^{-2} \cdot t$$

 $\alpha_{\mathbf{P}}(t) = (1.096 \pm 0.021) + (0.125 \pm 0.038) \,\mathrm{GeV}^{-2} \cdot t$ (ZEUS data and lower W data)

Pomeron Trajectory

H1 PRELIMINARY

S U M M A R Y

- First Physics Results using the H1 Fast Track Trigger FTT
- 267000 ρ° candidates triggered in 570 nb⁻¹ of 2005 data

Elastic and p-Dissociative
differential in W and t, ρ° Photoproduction
measured in the kinematic range $Q^2 < 4 \,\mathrm{GeV}^2$ $20 < W < 90 \,\mathrm{GeV}$

- $|t| < 3\,{\rm GeV^2} \qquad \qquad (M_Y^2\!\!+\!\!Q^2)/(W^2\!\!+\!\!Q^2) \,<\, 0.01$
- The Pomeron Trajectory determined, for the first time using data within one experiment
- α' significantly smaller than $0.25\,{
 m GeV}^{-2}$

 $lpha_{\mathbf{P}}\left(t
ight) = \left(1.093 \pm 0.003 \, {}^{+0.008}_{-0.007}
ight) \, + \, \left(0.116 \pm 0.027 \, {}^{+0.036}_{-0.046}
ight) \, \mathrm{GeV}^{-2} \cdot t$

In good agreement with previous result using ZEUS data and data at lower W