

XIV International Workshop on Deep Inelastic Scattering

Tsukuba

20-24 April 2006

Deeply Virtual Compton Scattering at HERA II (H1 results)

Benoit Roland I.I.H.E, Université Libre de Bruxelles Belgium On behalf of the H1 Collaboration

Introduction

Same final state as the BH process:

Q²: virtuality at which the proton is probed
t: square of the 4-momentum transfer
at the proton vertex
W: energy in the γ*p center of mass system

BH is a purely QED process involving only proton elastic form factors —> precise knowledge of this background

→ use it to study the

1

detector response

DVCS and BH processes interfere → interference term vanishes because of integration over the azimuthal angle

QCD predictions

 $Q^2 >> 1 \text{ GeV}^2$, - t << Q^2 : factorization of the DVCS process amplitude into a hard scattering at parton level, fully calculable in pQCD and a non-perturbative part describing the internal dynamics of the proton.

Emitted and absorbed partons carry different longitudinal momentum fractions

→ new formalism to describe the dynamics inside of the proton:

Generalized Parton Distributions: GPD = f (x, ξ , t; μ^2)

distribution of the partons in the transverse plane correlation between longitudinal and transverse distributions

QCD predictions

At low x: sensitivity to NLO processes and dominant contribution from $H^{g}(x, \xi, t; \mu^{2})$

NLO leading twist (+ twist three) QCD predictions

by A. Freund and M. McDermott (Eur.Phys.J. C23 (2002) 651)

DGLAP region: $|x| > \xi$

quark singlet: $H^q(x, \xi, t; \mu^2) = q(x; \mu^2) e^{-b |t|}$ gluon: $H^g(x, \xi, t; \mu^2) = x g(x; \mu^2) e^{-b |t|}$ input: usual pdfs from MRST2001 and CTEQ6 at a starting scale

 Q^2 and ξ dependence:

ERBL region: $|x| < \xi$

quark singlet and gluon
distributions are parametrized
by simple analytic functions

generated dynamically by the evolution equations.

Color Dipole Model

In proton rest frame, DVCS process can be seen as 3 subprocesses factorized in time:

GBW saturation model applied to DVCS with DGLAP evolution (BGBK)

by L. Favart and M.V.T. Machado Eur.Phys.J C29, 365 (2003)

Analysis strategy & events selection

DVCS enriched sample

BH control sample

contribute to this sample

LAr e^+ $e^+ \rightarrow e^+$ Sample dominated by BH events z^{+R}

Particle in SpaCal: $E_1 > 15 \text{ GeV}$, $153^\circ < \theta_1 < 175^\circ$ Particle in LAr: $P_{T2} > 2 \text{ GeV}$, $25^\circ < \theta_2 < 145^\circ$ Elastic selection: no other cluster with E > 0.5 GeV in LAr fwd detectors used as veto

Control Plots DVCS enriched sample

MC Simulation: Milou generator for DVCS el. & inel. contributions (NLO QCD cross-section + radiative corrections) Compton20 for the BH el. & inel. contributions

Cross Section Measurement

 Kinematics range:
 $6.5 < Q^2 < 80 \text{ GeV}^2$

 30 < W < 140 GeV

 $|t| < 1 \text{ GeV}^2$

extraction of the e p \longrightarrow e p $\gamma\,$ cross section:

bin by bin subtraction of the background (elastic and inelastic BH, inelastic DVCS) correction for acceptance, efficiency and radiative corrections

extraction of the $\gamma^* p \rightarrow \gamma p$ cross section: photon flux factor

Main contributions to systematics uncertainties

Proton dissociation background subtraction: 8 to 14 %

Correction for the acceptance (t dependence): 2 to 6 % in the highest t bin

Bin center correction for the W and Q^2 dependence: 3 to 6 %

 $\Delta \theta_{e}$, $\Delta \theta_{\gamma}$ (1/3mrad): 4 to 6 %

uncertainty on the energy scale: 2 to 5 %

Q² dependence

Combined fit to the H1 96-00 and H1 04 Prel. data using the parametrization: $\sigma (Q^2) = A \cdot (1/Q^2)^n$

statistical error on n parameter decreased

W dependence

Combined fit to the H1 99-00 and H1 04 Prel. data using the parametrization: $\sigma(W) = A . W^{\delta}$

statistical error on δ parameter decreased

t dependence

Q² dependence: NLO predictions

Band width includes experimental error on b: 5.26 < b < 6.40b kept constant, no dependence on Q² considered

No need for intrinsic skewing

W dependence: NLO predictions

Band width includes experimental error on b: 5.26 < b < 6.40b kept constant, no dependence on Q² considered

No need for intrinsic skewing

Q² dependence: Dipole Model

W dependence: Dipole Model

Conclusions and outlook

First HERAII measurement of DVCS cross sections

Preliminary results are in agreement with previous H1 results, QCD predictions and dipole model

Statistical errors on n, b and δ slopes have decreased