H1 diffractive structure functions measurement from new data

H1 diffractive structure functions measurement from new data - 1

Diffraction at HERA

 Momentum fraction of colour singlet exchange:

$${}^{-p} \qquad \qquad x_{\mathbb{P}} = \xi = \frac{Q^2 + M_X^2}{Q^2 + W^2}$$

Fraction of exchange momentum of q coupling to *γ**:

$$\beta = \frac{Q^2}{Q^2 + M_X^2} = \frac{x}{x_{\mathbb{P}}}$$

• 4-momentum transfer squared:

$$t = (p - p')^2$$

• Diffractive cross-section (integrated over t):

$$\frac{\mathrm{d}^3 \sigma^D}{\mathrm{d}x_{\mathbb{P}} \,\mathrm{d}\beta \,\mathrm{d}Q^2} = \frac{2\pi \alpha_{em}^2}{\beta Q^4} \quad \left(1 - y + \frac{y^2}{2}\right) \quad \sigma_r^{D(3)}(x_{\mathbb{P}}, \beta, Q^2)$$

H1 data samples

- H1 measurements use the large rapidity gap method (LRG)
- Defined for $M_Y < 1.6 \text{ GeV}$, $|t| < 1.0 \text{ GeV}^2$

- In middle Q² region:
 - H1 data 97, 10.5 pb⁻¹
 - New H1 data 99-00, 34 pb⁻¹
 - New H1 data 2004, 34 pb⁻¹
 - 🔌 6 times more statistics

99-00 Data

- H1 data 97
- H1 data 99-00 (prelim.)

- In middle Q² region:
 Q² = 10-105 GeV²
- Mx >4 GeV
- LRG: η_{max} <3.2
- No activity above noise in forward detectors
- Correction to M_Y < 1.6 GeV, |t| < 1.0 GeV² : 1.09 ± 0.06

Normalisation uncertainty of ~5%

Sood agreement between 97 and 99-00 data sets

2004 data

 Analysis of this sample more focused to larger Q² (17.5 - 105 GeV²)

Correction to M_Y < 1.6 GeV,
 |t| < 1.0 GeV² : 1.18 ± 0.10

Normalisation uncertainty of ~8%

Confirms 97 and 99-00 measurements

Diffractive contribution of the total cross-section

H1 η_{max} method vs ZEUS Mx method

H1 diffractive structure functions measurement from new data - 7

H1 Mx method

Traditionaly used by ZEUS

→ Is there systematic differences between Mx and LRG methods ?

➔ Apply Mx method to H1 data in the phase-space of this analysis

In the Regge approach: different $\frac{d\sigma_{\gamma^* p}^{aijj}}{d\ln M_{\gamma}^2} \simeq \left(\frac{s}{M_{\gamma}^2}\right)^{\alpha - 1} \simeq constant \ (\text{if } \alpha = 1)$ behaviour of ln Mx² for DIS and diffractive events $dN/d\ln(M_X^2) = D + c \exp(b\ln(M_X^2))$ $W = 200 - 245 \text{ GeV}, Q^2 = 10-20 \text{ GeV}^2$ for $\ln(M_X^2) \le \ln(W^2) - \eta_0$ Events 10⁴ H1 data (prelim.) $N^{non\,diff.} = \int_{1-(M_b^2)}^{\ln(M_b^2)} c \, \exp(b\ln(M_X^2)) \, d\ln(M_X^2))$ Subtracted part **Diffractive part** $D+c exp(b ln M^2)$ 10³ $N^{diff.} = N^{obs.} - N^{non\,diff.}$ 10² H1 detector: less acceptance in forward region 4 0 6 $\ln M_x^2 / GeV^2$ \rightarrow Large systematic on b (±15%)

H1 diffractive structure functions measurement from new data - 8

H1 Mx results

H1 Mx results -II-

- Mx points moved to Q^2 , β , x_{IP} bins and normalised to the same M_Y range ($M_Y < 1.6 \text{ GeV}$)
 - H1 etamax 99-00 (prelim.)
 - H1 Mx 99-00 (prelim.)
 - ZEUS Mx

→ Measurements at M_Y < 2.3 Gev are normalised by a factor 0.85

H1 Mx results (zoomed)

Compare all data set in two specific bins:

H1 diffractive structure functions measurement from new data - 11

Q² dependence and the Mx method

(C) (C)

Х_{IP}G

- At x_{IP}=0.005, previous measurements expressed as a function of Q² for fixed beta values
- Standard behaviour for diffractive scattering
- ➔ No systematic Q²-dependent difference observed between Mx and n_{max} methods
- Few Mx points: method not well adapted to H1 detector ...

2 gluons exchange model

- LO realisation of the Singlet Exchange
- BEKW parametrisation: [J. Bartels at al., Eur.Phys.J. C7, 443 (1999)]
 Modified form used [ZEUS coll., Nucl. Phys. B713 (2005)]

$$x_{\mathbb{P}} F_2^{D(3)} = c_T \cdot F_{q\bar{q}}^T + c_L \cdot F_{q\bar{q}}^L + c_g \cdot F_{q\bar{q}g}^T$$

$$F_{q\bar{q}g}^{T} \; \alpha \; \log(1 + \frac{Q^2}{Q_0^2}) \, (1 - \beta)^{\gamma}$$

At low β

🔌 Compare to data

E. Sauvan – CPPM Marseille

BEKW fit result

Summary

- Two new data sets provided
 - **→** 99-00: 34 pb⁻¹, 10 < Q² < 105 GeV²
 - → 2004: 34 pb⁻¹, 17.5 < Q² < 105 GeV²
- In agreement with previous 1997 measurements

- Cross-section determined using both LRG and Mx methods
 - No systematic difference due to the method observed in the phase-space covered by this analysis
- Data compared to the 2-gluon exchange model via a modified BEKW fit
 Good description of all data sets obtained

Solution Perspectives: > 100 pb⁻¹ at larger Q^2 waiting for analysis ...

Additional slides

Acceptance correction

- Need to correct the measurement in the range $M_Y < 1.6$ GeV and |t| < 1 GeV²
- C(MY) correction = 1/A

 $A= [N_{gen}^{el}(Range) + N_{Rec}^{pdis}(Fwd cuts OK)] / [N_{Gen}^{el+pdis}(M_{Y}<1.6 \text{ GeV},|t[<1 \text{ GeV}^{2})]$

• Calculations done requireing a good Mx/M_Y separation

1999-2000 : A=1.09 +/- 0.06 => dA/A ~ 5% normalisation uncertainty on the xs

2004 : A=1.18 +/- 0.10 => 8% normalisation uncertainty on xs