Search for Leptoquarks at HERA-I

Christian Helebrant

Η1

DIS2006, Tsukuba, April 20-24, 2006

Introduction

Leptoquarks

- couple directly to a lepton and a quark
- carry both color and electric charge
- appear in many theories beyond SM (RPV SUSY, GUT)
- experimentalist approach: derive properties of LQs from experimentally observed limitations only

Limitations from Observations

- assume no LFV, no FCNC
 - \implies each LQ couples only to *one* generation
- don't favour $\pi \to e \nu$
 - \implies chiral couplings (either left- or right-handed)
- no *p*-decay
 - \Longrightarrow LQ only couples to lepton and quark, never to two quarks

Introduction

Buchmüller-Rückl-Wyler-Model

- 14 first generation LQs
- classified by Spin, Weak Isospin, e⁻ chirality
- Fermion number
 F = 2 (*e*⁻*q*) or
 F = 0 (*e*⁺*q*)
- all can decay into $e^{\pm}q$
- only 4 of them can also decay into vq'
- branching ratio fixed to $\beta_e = 1$ or 0.5

two free parameters: LQ mass M Yukawa coupling λ

Γ	<i>F</i> = 2	Prod./Decay	β_e	<i>F</i> = 0	Prod./Decay	β_e
1	Scalar Leptoquarks					
IF	$S_{0,L}$	$e_L^- u_L \rightarrow e^- u$	1/2	$S_{1/2,L}$	$e_R^+ u_R \to e^+ u$	1
L		$\rightarrow \nu d$	1/2			
L	$S_{0,R}$	$e_R^- u_R \to e^- u$	1	$S_{1/2,R}$	$e_L^+ u_L \rightarrow e^+ u$	1
IL	$\tilde{S}_{0,R}$	$e_R^- d_R \to e^- d$	1		$e^+_L d_L ightarrow e^+ d$	1
I	$S_{1,L}$	$e_L^- d_L \to e^- d$	1	$\tilde{S}_{1/2,L}$	$e^+_R d_R ightarrow e^+ d$	1
L		$e_L^- u_L \rightarrow e^- u$	1/2			
L		$\rightarrow \nu d$	1/2			
L	Vector Leptoquarks					
L	$V_{1/2,R}$	$e_R^- d_L \to e^- d$	1	$V_{0,R}$	$e^+_L d_R ightarrow e^+ d$	1
L		$e_R^- u_L \rightarrow e^- u$	1	V _{0,L}	$e^+_R d_L ightarrow e^+ d$	1/2
I.					$\rightarrow \overline{\nu}u$	1/2
I	$V_{1/2,L}$	$e_L^- d_R ightarrow e^- d$	1	$\tilde{V}_{0,R}$	$e_L^+ u_R \rightarrow e^+ u$	1
I	$\tilde{V}_{1/2,L}$	$e_L^- u_R \rightarrow e^- u$	1	$V_{1,L}$	$e_R^+ u_L \rightarrow e^+ u$	1
					$e^+_R d_L ightarrow e^+ d$	1/2
					$\rightarrow \overline{\nu}u$	1/2

C. Helebrant (H1)

Introduction

Leptoquarks at HERA

- resonant production in s-channel at $M = \sqrt{x \cdot s_{ep}}$
- exchange in u-channel
- signature: one jet, one e/ν
- single events indistinguishable from SM NC/CC-DIS
- detection only statistical
- sensitive quantities:

mass $M = \sqrt{Q^2/y}$ y-spectrum $d\sigma/dy$

- scalar LQ in s-channel: $d\sigma/dy$ flat
- vector LQ in s-channel: $d\sigma/dy \propto (1-y)^2$

• DIS: $d\sigma/dy \propto y^{-2}$

Data Sets

HERA-I

•
$$e^+p$$
 $\sqrt{s_{ep}} \approx 300 \text{ GeV}$ 37 pb⁻¹

2
$$e^-p$$
 $\sqrt{s_{ep}} \approx 320 \text{ GeV}$ 15 pb^{-1}

$${igside}~e^+ p ~\sqrt{s_{ep}} pprox 320~{
m GeV}~65~{
m pb}^{-1}$$

 \implies full statistics accumulated by H1 (1994-2000): 117 pb⁻¹

• analysis published in 2005: hep-ex/0506044

General

- kinematic reconstruction from scattered electron
- $Q_e^2 > 2500 \, {\rm GeV}^2$
- $0.1 < y_e < 0.9$

NC-specific

- identified e^{\pm} with $P_{T} > 15 \,\mathrm{GeV}$
- one jet with $E_{T,jet} > 7 \,\text{GeV}$
- $P_T^{miss}/\sqrt{E_{T,e}} < 4\sqrt{\text{GeV}}$
- $40 \, \text{GeV} < E p_z < 70 \, \text{GeV}$

General

- kinematic reconstruction from hadronic final state
- $Q_h^2 > 2500 \, {\rm GeV}^2$
- $0.1 < y_h < 0.9$

CC-specific

- no e^{\pm} candidate with $E_T > 5 \,\text{GeV}$
- $P_T^{miss} > 25 \, \text{GeV}$

•
$$V_{ap}/V_p < 0.2$$

Mass Distributions after all Cuts

- good agreement with SM prediction
- no sign of LQs \implies interpretation in terms of exclusion limits

C. Helebrant (H1)

Setting Constraints on Leptoquarks

Fractional Event Counting

- BRW model: two free parameters M, λ
- analysis in binned *M*-*y*-plane (sensitive quantities)
- apply weight w_i to each bin according to its signal-to-background ratio (w_i = s_i/s_{i+2b})

- two hypotheses (Monte Carlo):
 - background only
 - signal + background
- no generic LQ-MC but reweighted SM-MC because of interferences between signal and background (negative signal)
- in weighted bins compare data to both hypotheses
- \Rightarrow calculate minimal $\lambda(M)$ to be excluded

Exclusion Limits within the BRW Model

- F = 2 LQs with weaker limits ($\mathcal{L}_{e-p} = 15 \text{ pb}^{-1}$)
- *M* < 300 GeV: resonant production, strong limits
- *M* ≈ 300 GeV: CM energy of HERA
- $M > 300 \,\mathrm{GeV}$: u-channel

•
$$\lambda = \sqrt{4\pi \alpha_{em}} = 0.3$$
:
 $M < 275 - 325 \text{ GeV}$
ruled out

Results Compared to Other Experiments

- D0: $q\bar{q}$ annihilation, gg fusion \Rightarrow limit is independent of λ
- LEP: u/t-channel exchange \Rightarrow limits similar to H1 at M > 300 GeV
- results of H1 Contact Interaction analysis reproduced
- in s-channel region: H1 limits extend those set by other experiments

Beyond the BRW Model

Generic LQ Models

- β_e is now a free parameter
 ⇒ M-dependent limits
 on β for a given λ
- for small λ : limits largely independent of β
- high sensitivity for LQs with mostly CC-like decays (small β_e, high β_ν)

Summary

- search for LQs using all data collected by H1 between 1994 and 2000
- no signal observed
- constraints on LQs have been set
- limits extend beyond results by other analyses
- $M < 275 325 \, {\rm GeV}$ can be ruled out for $\lambda = \sqrt{4\pi lpha_{\it em}} = 0.3$

Summary and Outlook

Outlook

- analysis of HERA-II data from H1 is ongoing
- higher luminosity than for HERA-I
- large e[−]p data set
 ⇒ improve limits for LQs
 with F = 2
- polarised electron beams
 ⇒ enhance sgn-to-bgr ratio
 since LQs have chiral
 couplings

