

Measurement of the CKM Sides at the B-Factories

Wolfgang Menges

On behalf of the BaBar and Belle Collaborations Queen Mary, University of London, UK

- CKM matrix and Unitarity Triangle
- Semileptonic B decays ($|V_{ub}|, |V_{cb}|$)
- Summary

CKM Matrix and Unitarity Triangle

- weak and mass eigenstates of the quarks are not the same
- changes in base are described by unitarity transformations
- Cabibbo Kobayashi Maskawa (CKM) matrix

Wolfenstein parametrisation

See talk by

Y. Iwasaki

See talk

by Y. Kwon

Unitarity Triangle Fits

Semileptonic B Decays

Semileptonic B decays allow measurement of $|V_{cb}|$ and $|V_{ub}|$ from tree level processes.

Presence of a single hadronic current allows control of theoretical uncertainties.

 $b \rightarrow clv$ is background to $b \rightarrow ulv$:

$$\frac{\Gamma(b \to u \ell \,\overline{v})}{\Gamma(b \to c \ell \,\overline{v})} \approx \frac{\left|V_{ub}\right|^2}{\left|V_{cb}\right|^2} \approx \frac{1}{50}$$

 $E_{1} = lepton energy$ $E_{1} = lepton energy$ $Q^{2} = lepton-neutrino mass squared$ $m_{X} = hadron system mass$ $P_{+} = E_{X} - |p_{X}|$ favoured by theory

$|V_{cb}|$ from b \rightarrow clv decays

Inclusive Decays: $|V_{cb}|$ from $b \rightarrow clv$

• Operator Product Expansion (OPE): double expansion in α_s and m_b^{-1}

Benson, Bigi, Mannel, Uraltsev, hep-ph/0410080 Gambino, Uraltsev, hep-ph/0401063 Benson, Bigi, Uraltsev, hep-ph/0410080

$$\Gamma_{clv} = \frac{G_F m_b^5}{192\pi^3} |V_{cb}|^2 (1 + A_{ew} A_{per} A_{nonpert}) = |V_{cb}|^2 f_{OPE}(m_b, m_c, a_i)$$

Depends on scheme, order of expansion

- Fit moments of inclusive distributions
 - lepton energy, hadron invariant mass
 - Determine OPE parameters and $|V_{cb}|$

$$< X^{n} > (E_{cut}) = \frac{\int (X - X^{0})^{n} \frac{d\Gamma}{dX} dX}{\int \frac{d\Gamma}{dX} dX}$$

- Measurements from B Factories, CDF, Delphi
- Recent measurements from Belle:

Results

Global fit in the kinetic scheme

Buchmüller, Flächer: hep-ph/0507253

Based on:

Babar:

- PRD69, 111103 (2004)
- PRD69, 111104 (2004)
- PRD72, 052004 (2005)
- hep-ex/0507001

Belle:

- PRL93, 061803 (2004)
- hep-ex/0508005

CLEO:

- PRD70, 032002 (2004)
- PRL87, 251807 (2001)
 CDF: PRD71, 051103 (2005)
- **DELPHI:** EPJ C45, 35 (2006)

				exp	HQE	$\Gamma_{\sf SL}$
	$ V_{cb} $	=	(41.96 ±	0.23	± 0.35	± 0.59) 10 ⁻³
	BR_{clv}	=	10.71 ±	0.10	± 0.08	%
	m b	=	4.590 ±	0.025	± 0.030	GeV
	m _c	=	1.142 ±	0.037	± 0.045	GeV
a.	μ_{π}^2	=	0.401 ±	0.019	± 0.035	GeV ²
ل ال	$\mu_{G}^{2}, \ \rho_{D}^{3}, \rho_{LS}^{3}$					

Exclusive |V_{cb}| and Form Factors

Reconstruct B -> D^{*+}ev as D^{*+} \rightarrow D⁰ π^+ with D⁰ \rightarrow K π BABAR hep-ex/0602023

$$rac{\mathrm{d}\Gamma}{\mathrm{d}w} \propto \mathcal{G}(w) \mathcal{F}(w)^2 |V_{cb}|^2$$

G(w) known phase space factor F(w) Form Factor (FF) w = D* boost in B rest frame

- F(1)=1 in heavy quark limit; lattice QCD says: F(1) = $0.919_{-0.035}^{+0.030}$
- Shape of F(w) unknown
- Parametrized with ρ^2 (slope at w = 1) and form factor ratios $R_1, R_2 \sim independent on w$

h_{A1} expansion a-la Caprini-Lellouch-Neubert Nucl. Phys. B 530, 153 (1998)

$$\frac{d\Gamma(B \to D^* \ell v)}{dq^2 d \cos \theta_\ell d \cos \theta_V d\chi} = |V_{cb}|^2 f(q^2, \theta_\ell, \theta_V, \chi, \rho^2, R_1, R_2)$$

-> measure form factors from multi-dimensional fit to diff rate \rightarrow measure $|V_{cb}|$ with

Hashimoto et al, PRD 66 (2002) 014503

B $\rightarrow D^* I v$ Form Factors and $|V_{cb}|$

stat sys theo $R_1 = 1.396 \pm 0.060 \pm 0.035 \pm 0.027$ $R_2 = 0.885 \pm 0.040 \pm 0.022 \pm 0.013$ $\rho^2 = 1.145 \pm 0.059 \pm 0.030 \pm 0.035$

Factor 5 improvement of FF uncertainty from previous CLEO measurement (1996).

Using latest form factors with previous BaBar analysis: PRD71, 051502(2005)

 $|V_{cb}| = (37.6 \pm 0.3 \pm 1.3^{+1.5}_{-1.3}) \times 10^{-3}$

Reducing FF error: 2.8% -> 0.5% Total sys error: 4.5% -> 3.5%

Summary of |V_{cb}| Results

The new BaBar form factors are not included. Work is going on.

 $|V_{cb}|[x10^{-3}]$ from B->D*lv: 40.9±1.0_{exp}-1.3 F(1)

|V_{cb}|[x10⁻³] from b->clv: 42.0±0.2_{exp}±0.4_{HQE}±0.6_Γ

→ good agreement!

$|V_{ub}|$ from b \rightarrow ulv decays

Inclusive $b \rightarrow u lv$: Strategies

Use kinematic cuts to separate $b \rightarrow ulv$ from $b \rightarrow clv$ decays:

- smaller acceptance -> theory error increase
 - OPE breaks down
 - shape function to resum non-pert. corrections
- measure partial branching fraction ΔB
- get predicted partial rate $\Delta \zeta$ from theory

$$\left|V_{ub}\right| = \sqrt{\frac{\Delta B(B \to X_{u} \ell \nu)}{\Delta \zeta \cdot \tau_{B}}}$$

Lepton Endpoint

BABAR PRD73, 012006 (2006)

Select electrons with $2.0(1.9) < E_{1} < 2.6 \text{ GeV}$

- Push below the charm threshold
 - → Larger signal acceptance
 - → Smaller theoretical error
- Accurate subtraction of background is crucial!
 - off-resonance data
 - events with $p_e > 2.8 \text{ GeV}$
 - fit b->clv composition in bkg subtraction
- Measure the partial BF

 $\begin{aligned} |V_{ub}| & [10^{-3}]: \\ BaBar: L = 80 \text{ fb}^{-1}, E_{|} = 2.0-2.6 \text{ GeV} \\ 4.44 \pm 0.25_{exp} \stackrel{+0.42}{_{-0.38}}_{SF} \pm 0.22_{theo} \\ Belle: L = 27 \text{ fb}^{-1}, E_{|} = 1.9-2.6 \text{ GeV} \\ 5.08 \pm 0.47_{stat} \pm 0.42_{SF} \stackrel{+0.26}{_{-0.23}}_{theo} \end{aligned}$

Mary

Queen

Menges,

Wolfgang

15

Hadronic B Tag

- fully reconstruct one B in hadronic decay mode
- study the recoiling B -> known momentum and flavour
- access to all kinematic variables (m_x , q^2 , P_+)

K.....

lepton

Status of Inclusive | V_{ub}|

Reducing Model Dependence

• relate charmless SL rate to $b \rightarrow s\gamma$ spectrum $\Gamma(B \to X_u \ell v) = \frac{|V_{ub}|^2}{|V_{ts}|^2} \int W(E_{\gamma}) \frac{d\Gamma(B \to X_s \gamma)}{dE_{\gamma}} dE_{\gamma}$ Weight function reduced dependence from shape function $\frac{|V_{ub}| \times 10^3}{8}$ theory Full hep-ex/0601046 uncertainties Rate following Leibovich, Low, Rothstein 4 hep-ph/0005124,0105066 L = 80 fb⁻¹ 2 m_x cut $\zeta [\text{GeV/c}^2]$ Acceptance: LLR : $M_X < 1.67 \text{ GeV}$: $|V_{ub}| = (4.43 \pm 0.38_{stat} \pm 0.25_{syst} \pm 0.29_{theo}) \ 10^{-3}$ 72% OPE: $M_X < 2.50 \text{ GeV}$: $|V_{ub}| = (3.84 \pm 0.70_{stat} \pm 0.30_{syst} \pm 0.10_{theo}) \ 10^{-3}$ 98%

\ge Exclusive b \rightarrow ulv

- measure specific final states, e.g., $B \rightarrow \pi Iv$
 - can achieve good signal-to-background ratio
 - branching fractions are $O(10^{-4}) \rightarrow$ statistics limited
- need form factors to extract $|V_{ub}|$ $\frac{d\Gamma(B \to \pi \ell \nu)}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p_\pi^3 |f_+(q^2)|^2$ Need to measure q^2
 - theo. uncertainties complementary to inclusive approach!
- $f_{+}(q^2)$ calculations exist based on:
 - Lattice QCD (q² > 15 GeV²) → 11% uncertainty hep-lat/0409116, PRD73, 074502(2006)
 - Light Cone Sum Rules (q^2 < 14 GeV²) → 10% uncertainty PRD71, 014015(2005), PRD71, 014029(2005)
 - Quark models (ISGW2) ... and other approaches PRD52, 2783(1995)

q² Distributions and FF Calculations

- select B -> π lv and ρ lv without reconstructing other B
 - well-identified high energetic lepton, π^{\pm} , $\pi^{0}(\gamma\gamma)$, $\rho^{0}(\pi^{+}\pi^{-})$, $\rho^{\pm}(\pi^{\pm}\pi^{0})$
 - missing momentum and energy in event \rightarrow reconstruct neutrino

Status of Exclusive |V_{ub}|

Mary Queen Menges, Wolfgang

20

Summary

The Unitarity Triangle

- $|V_{cb}|$ determined with high precision (2%) \rightarrow Now $|V_{ub}|$ is important!
- Precise determination of $|V_{ub}|$ complements sin2 β to test the validity of the Standard Model
- Close collaboration between theory and experiment is important Inclusive $|V_{ub}|$:
 - 7.4% accuracy achieved so far \rightarrow 5% possible?
 - much experimental and theoretical progress in the last 2 years Exclusive $|V_{ub}|$:
 - Significant exp. progress in the last year
 - FF calculations need to improve

• Important to cross-check inclusive vs. exclusive results

The Unitarity Triangle

- $|V_{cb}|$ determined with high precision (2%) \rightarrow Now $|V_{ub}|$ is important!
- Precise determination of $|V_{ub}|$ complements sin2 β to test the validity of the Standard Model

Queen Mary Wolfgang Menges, 23

The Unitarity Triangle

- $|V_{cb}|$ determined with high precision (2%) \rightarrow Now $|V_{ub}|$ is important!
- Precise determination of |V_{ub}| complements sin2β to test the validity of the Standard Model

Backup

b→sγ helps too…

Queen Mary Wolfgang Menges, 26