DIS 2006 - EW Tests and Top Production

April 20th 2006

<u>Top Quark Properties</u> <u>at the Tevatron</u>

Ludwig-Maximilians-Universität München

Outline: • Measurements of the Top Quark Mass

- Measurements of other Top Quark Properties
 - → W Boson Helicity
 - → Top Quark Charge
 - → Search for tT Resonances

Philipp Schieferdecker, Munich University (LMU) on behalf of the CDF and DØ Collaborations

bmb+f - Förderschwerpunkt

Elementarteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

- Both CDF and DØ recording collisions at $\sqrt{s=1.96}$ TeV from the Tevatron, currently the world's only top quark factory
- Precise tracking and vertexing for b-tagging and improved lepton identification
- Data taking efficiency: >85%
- More than 1fb⁻¹ of data recorded per experiment;
 Results presented here make use of up to 750pb⁻¹

Top Production and Decay

- In ppbar collision at √s=1.96 TeV, top quarks are primarily produced in pairs
 - SM cross section: ~7 pb
 - → ~85% via quark annihilation
 - → ~15% via gluon fusion
- t->Wb branching ratio ~1, different analysis channels considered according to W boson decay modes:
 - → alljets (~44%)

 Reconstruction of τ-leptons is experimentally challenging. τ-final states are not considered in the analyses presented here, in the following "lepton" always refers to e or μ!

April 20th 2006

- The top quark mass is a free parameter of the Standard Model
- The top quark is by far the heaviest of the six known quarks
- Its suspiciously high mass suggests a special role of the top quark in the Standard Model yet to be revealed
- Precision measurements of the top quark and W boson masses constrain the mass of the Higgs boson via radiative corrections
- With 4-8fb⁻¹ of Tevatron data: δm_t~1.5 GeV (CDF and DØ combined)

Tevatron top quark mass measurements will be relevant for many years, even after LHC turnon

April 20th 2006

CDF: Template Method (lepton+jets)

• For each event, reconstruct m_t using a kinematic fit:

$$\begin{split} \chi^2 \ &= \ \sum_{i=\ell,4jets} \frac{(p_T^{i,fit} - p_T^{i,meas})^2}{\sigma_i^2} \\ &+ \sum_{j=x,y} \frac{(p_j^{UE,fit} - p_j^{UE,meas})^2}{\sigma_j^2} \\ &+ \frac{(M_{\ell\nu} - M_W)^2}{\Gamma_W^2} + \frac{(M_{jj} - M_W)^2}{\Gamma_W^2} \\ &+ \frac{(M_{b\ell\nu} - m_t^{\rm reco})^2}{\Gamma_t^2} + \frac{(M_{bjj} - m_t^{\rm reco})^2}{\Gamma_t^2} \end{split}$$

- \bullet Choose $m_{\scriptscriptstyle t}$ from jet-parton assignment with lowest χ^2
- Build template distributions from Monte Carlo samples with different true top quark masses
- Extract result from data sample using an unbinned likelihood fit:

$$\mathcal{L}_{ ext{sample}} = \mathcal{L}_{ ext{shape}}^{m_t^{ ext{reco}}} imes \mathcal{L}_{ ext{shape}}^{m_{ ext{jj}}} imes \mathcal{L}_{ ext{nev}} imes \mathcal{L}_{ ext{bg}}$$

- Divide events into 4 subsamples according to the number of identified b-jets to improve statistical sensitivity
 - \star events with more b-tags show better mass resolution and higher S/B
 - 1-tag(L): lower pT threshold for 4th jet than 1-tag(T)

CDF: Template Method II

In situ jet energy calibration:

- The mass of the hadronically decaying W boson provides a constraint on the jet energy calibration
- → Expressed in units of the uncertainty $\sigma(p_{\tau}, \eta)$ of the external calibration
- → Use reconstructed di-jet mass templates, various scales
- Reduce dominant systematic uncertainty due to jet energy scale!

Systematic Uncertainties:

- Dominant systematic uncertainty (JES) absorbed in likelihood fit result (~1.8 GeV)
- → Residual JES error: from p_T and n dependent scale uncertainties
- Remaining uncertainties largely due to uncertainties in modeling

	0.7
Residual Jet Energy Scale	0.7
SR/FSR	0.6
3-jet modeling	0.6
Background Shape	0.5
Background JES	0.4
Parton Distributions	0.3
Generator	0.2
Simulation Statistics	0.3
3-tagging	0.1
otal	1.3

CDF: Template Method III

April 20th 2006

- Use each event's full kinematic information to calculate probability to originate from tt production, as a function of assumed m_t
- Calculate the probability to be background accordingly and combine to event probability:

 $\rightarrow P_{evt}(x;m_t,f_{sgn}) = f_{sgn} P_{sgn}(x;m_t) + (1-f_{sgn}) P_{bkg}(x)$

where f_{sqn} is the fraction of signal events in the sample

- Combine all events in a likelihood
 - $\rightarrow -\ln L(x_1, \ldots, x_n; \mathbf{m}_t, \mathbf{f}_{sgn}) = -\Sigma_{i=1}^n \ln P_{evt}(x_i; \mathbf{m}_t, \mathbf{f}_{sgn})$

and maximize likelihood w.r.t. to m_t and f_{sgn}

- Well measured events contribute more than poorly measured events: achieve optimal use of statistical information!
- I will present applications of this method to both <u>lepton+jets</u> and <u>dilepton</u> events
- Lepton+Jets: Use invariant mass of hadronically decaying W boson to obtain JES
 - → L=L($x_1,...,x_n;m_t,f_{sgn},JES$)

April 20th 2006

- JES is global scale factor relative to external jet energy calibration
- Reduce dominant systematic uncertainty by fitting m_t and JES simultaneously

Matrix Element Method II

Calculation of the signal probability:

- \rightarrow Integration over parton phasespace (y)
- → Assume all angles to be well measured
- → Assume p_T(††)=0
- \rightarrow Parametrize detector resolution of all energies (W(x,y))
- → Perform remaining (5-6) integrations using MC integration techniques:

$$\mathcal{P}_{t\bar{t}}(\vec{x}, m_{t}) = \underbrace{\frac{1}{\sigma_{t\bar{t}}(m_{t})}}_{\text{Normalisation}} \int \underbrace{\mathrm{d}p_{q} \mathrm{d}p_{\bar{q}} f(p_{q}) f(p_{\bar{q}})}_{\text{PDFs}} \underbrace{\frac{\mathrm{d}\sigma_{t\bar{t}}(\vec{y}, m_{t})}_{\text{diff. xsec}}}_{\text{MATRIX ELEMENT}} \underbrace{\frac{\mathrm{d}(\vec{x}, \vec{y})}_{\text{det. resolutions}}}_{\text{det. resolutions}}$$

- Consider all possible jet-parton assignments!
- $\boldsymbol{\textbf{\textbf{+}}}$ Consider all possible solutions for the z-component of the neutrino momenta

Parametrization of jet energy resolution: jet transfer function W(Ej,Ep)

- W(E_j,E_p) yields for each parton energy E_p the probability to be measured as E_j (j=jet) in the calorimeter
- Parametrized as a double Gaussian in $\delta E=E_j-E_p$ (5 parameters), where each parameter is a linear function of E_p itself
 - $\rightarrow\,$ jet resolution is function of $E_{_p}$
- Different parameter sets for light jets, b jets, and semileptonic b-jets. Derived from Monte Carlo events.
- Lepton+Jets: The global jet energy scale parameter JES is included in the event probability via the jet transfer function:

$$W(E_{j}, E_{p}; JES) = \frac{W(\frac{E_{j}}{JES} - E_{p})}{JES}$$

April 20th 2006

CDF: Matrix Element Method (dilepton)

Dilepton-Result:

m_t=164.5 ± 4.5 (stat.) ± 3.1 (syst.) GeV

- Most precise dilepton-measurement to date
- No b-tagging used in result above
- <u>Result with b-tagging:</u> 162.7 ± 4.6_{stat} ± 3.0_{syst} GeV
 - require at least one b-tagged jet (secondary vertex tag)

Systematic uncertainties:

Šource	$\Delta M_t \; ({\rm GeV}/c^2)$
Jet Energy Scale	2.6
Generator	0.5
Response uncertainty	0.3
Sample composition uncertainty	0.7
Background statistics	0.8
Background modeling	0.8
ISR modeling	0.5
FSR modeling	0.5
PDFs	0.6
Total	3.1

April 20th 2006

CDF: Matrix Element Method (lepton+jets)

- More powerful technique than template method (p.5-7), but fewer events used (118/360)
 - exactly 4 calorimeter jets
 - → at least one b-tagged jet (secondary vertex tag)

Systematic uncertainties:

Source of systematic uncertainty	Magnitude (GeV/c^2)
Residual JES	0.42
b-JES	0.60
Generator	0.19
ISR	0.72
FSR	0.76
b -tag E_T dependence	0.31
Background composition	0.21
PDF	0.12
Monte Carlo statistics	0.04
Total	1.35

DØ: Matrix Element Method (lepton+jets)

D0 Run II Preliminary

 η_{top}^{fit} - 175.0 (GeV)

m₊=170.6^{+4.0} _{-4 7} (stat.+JES) ± 1.4 (syst.) GeV

- Based on 370pb-1 dataset
- Similar to the CDF template analysis, the sample is divided in subsamples with 0,1,or 2 b-tagged jets
 - → ~20% improvement w.r.t analysis w/o b-tagging
 - → ~30% improvement w.r.t. selecting events with at least 1 b-tagged jet

CDF: Decay Length Technique

• At the Tevatron, where top pairs are produced approximately at rest, the boost given to the b-quark is correlated to the top mass:

 $\gamma_b = rac{m_t^2 + m_b^2 - m_W^2}{2m_t m_b} pprox 0.4 rac{m_t}{m_b}$

- boost -> avg. lifetime -> avg. transv. decay-length
- With current statistics, this method is not competitive to other measurements yet
- no jet energy scale uncertainty, as the method relies purely on tracking
- Uncorrelated with other measurements

Top Mass 1σ Confidence Intervals - Measured <L_{xv}> Overlaid

5

10

15

20

25

L_{xy} [mm]

DØ: Dilepton Analyses

Neutrino Weighting Analysis

- Underconstrained kinematic fit
- Assume n distribution of neutrinos from MC
- Compute weights for each event, m_t
- Compare weight distribution in data with MC templates

Matrix Weighting Analysis

- Use Matrix Element prediction and m_t to compute event weights
- For each event, choose m_t at the peak of the weight distribution
- Compare m_t distribution with MC templates

April 20th 2006

M_{top}: Combination of Tevatron Results

World Average:

m_t=172.5 ± 1.3 (stat) ± 1.9 (syst) GeV

- Systematics limited!
- Precision Measurement: $\Delta m_{t} \sim 1.3\%$
- In the 4-8fb⁻¹ future, we expect ...
 ... ~1.5 GeV total error
 - ... dilepton to become systematics limited
 - ... all-hadronic measurements to contribute significantly

Best Independent Measurements of the Mass of the Top Quark (*=Preliminary)

April 20th 2006

 $M_{Higgs} = 89^{+42}_{-30} GeV$

M_{Higgs}<175 GeV (95% conf.) (207 GeV including LEP2)

April 20th 2006

Other Top Quark Properties

- top pair decays offer countless opportunities for Standard Model tests
- Many of the top quark properties are just about to become accessible with Tevatron statistics
- Lots of room for exotic behavior
- The following slides show the latest measurements of
 - → W Boson Helicity
 - → Top Charge
 - → Search for tt resonances

W Boson Helicity

- Standard Model: right-handed W from t->Wb surpressed by V-A coupling, f⁺~0%
- f⁺>O clear signature for non-SM physics
- Experimentally accessible via:
 - → Lepton p_T: Charged lepton from a right-handed W preferentially emitted along W boson direction, therefore larger p_T
 - <u>cos θ</u>*: angle between charged lepton and top quark in the W boson rest frane

CDF: W Boson Helicity

- Lepton p_T Analysis:
 - Dilepton and lepton+jets events
 - Lepton+Jets: at least 3 jets
- cos θ* Analysis:
 - Subsample of Lepton pT lepton+jets sample, requiring at least 4 jets
- At least one b-tagged jet required in lepton+jets (secondary vertex tag)

In agreement with SM prediction

April 20th 2006

DØ: W Boson Helicity

Combined Result: f⁺=0.08 ± 0.08_{stat} ± 0.06_{syst}

f⁺<0.24 @95%C.L.

In agreement with SM prediction

- Use topological likelihood discriminant to select top pair enriched sample
- Use kinematic fit to reconstruct top pair and W boson rest frame
- Fit cos θ* distributions with Monte Carlo templates, varying f⁰ from 0.0 to 0.3
- Extract f^o using binned likelihod technique

- Standard Model (SM): Q_t=2/3e
- Interpretation Q₊=-4/3e possible as well
- <u>lepton+jets</u> selection, requiring 2 b-tagged jets (secondary vertex tag). ~95% top pairs.
- Use kinematic fit to reconstruct top pairs
 - → Correct t->Wb assignment: ~78%.
- Measure the jet-charge of the tagged jets to discriminate between b and b, using tracks associated with each jet:

$$q_{jet} = \frac{\sum_{i} q_i \cdot p_{T_i}^{0.6}}{\sum_{i} p_{T_i}^{0.6}}$$

- Two measurements per event:
 (1) lepton charge plus associated b-jet charge
 (2) other b-jet charge minus lepton charge
- Construct $Q_t=2/3e$ and $Q_t=-4/3e$ templates and compare to top charge distribution derived from data

 \bullet To test the Standard Model, a likelihood ratio Λ is computed:

$$\Lambda = \frac{\prod_i p^{\rm sm}(q_i)}{\prod_i p^{\rm ex}(q_i)}$$

with

- → psm(q_i) = probability of charge q_i being observed for Q_t=2/3e (SM)
- → p^{ex}(q_i) = probability of charge q_i being observed for Q_t=-4/3e (EX=exotic models)
- The expected distributions of Λ are derived in Monte Carlo ensemble tests for both scenarios
- The data sample yields Λ =11.5 (dashed line)

CDF&DØ: Search for tt resonances

CDF:

lepton+jets selection, no b-tagging requirements

top quarks reconstructed with matrix element method

DØ:

 lepton+jets selection, at least one btagged jet (secondary vertex tag)

top quarks reconstructed with constrained kinematic fit

Limits on production of leptophobic Z':

April 20th 2006

April 20th 2006

Top Mass Measurements at the Tevatron have entered high precision era:
 Combination of results yields current <u>world average</u>:

- → Expect total error $\Delta m_{t} \sim 1.5 \text{ GeV}$ with full RunII sample (4-8fb⁻¹)
- These results will be relevant for years, even after LHC startup
- Tevatron Collaborations are zooming in on the top quark's other properties
 - Current measurements show good agreement with the Standard Model
 - Application to a larger dataset (~1fb⁻¹) forecasts interesting results for this summer with significantly improved sensitivity to potential non-SM physics