SPA: SUSY Parameter Analysis at LHC/ILC

SPA Collaboration: J.A.Aguilar-Saavedra et al

- **1.** SPA Project: Basis and Objectives
- 2. Extracting SUSY Parameters at LHC/ILC
- **3.** Extrapolation to GUT/Planck Scale

1. SPA PROJECT: BASIS AND OBJECTIVES

Program :
Measurement of exp SUSY parameters: masses, mixings, couplings

- Extraction of essential SUSY elements: gaugino/scalar \mathcal{L} parameters
- b-up/t-down approaches to GUT/Planck physics scenario

Technique : Definition of h.o. renormalization and l.e. parameter scheme [F.2A]

SPA Convention

- The *masses* of the SUSY particles and Higgs bosons are defined as pole masses.
- All SUSY Lagrangian parameters, mass parameters and couplings, including $\tan \beta$, are given in the \overline{DR} scheme and defined at the scale $\tilde{M} = 1$ TeV.
- Gaugino/higgsino and scalar mass matrices, rotation matrices and the corresponding angles are defined in the \overline{DR} scheme at \tilde{M} , except for the Higgs system in which the mixing matrix is defined in the on-shell scheme, the momentum scale chosen as the light Higgs mass.
- The Standard Model input parameters of the gauge sector are chosen as G_F , α , M_Z and $\alpha_s^{\overline{MS}}(M_Z)$. All lepton masses are defined on-shell. The t quark mass is defined on-shell; the b, c quark masses are introduced in \overline{MS} at the scale of the masses themselves while taken at a renormalization scale of 2 GeV for the light u, d, s quarks.
- Decay widths/branching ratios and production cross sections are calculated for the set of parameters specified above. [F.2A]

Specific SUSY Point

Allanach ea

SPS1a/a' spectrum in mSUGRA :

favorable mass range for ILC and LHC

$b \to s \gamma$	$3.0\cdot 10^{-4}$	3.70 ± 0.30
m_h	$115.4 {\rm ~GeV}$	\geq 114 GeV
$\Delta a_{\mu} [ee]$	$34 \cdot 10^{-10}$	25.2 ± 9.2
$\Omega_{cdm}h^2$	0.10	$0.127\substack{+0.007 \\ -0.013}$

LHC direct production : $pp \rightarrow \tilde{q}\tilde{q}, \tilde{g}\tilde{g}, \tilde{q}\tilde{g}$

Beenakker, Höpker, Spira, Z

cross sections in NLO : small residual scale dependence $% \mathcal{O}(\mathcal{O})$

DIS \Rightarrow parton densities

 $m_{\tilde{q}/\tilde{g}} \sim 1 \text{ TeV} \Rightarrow \sim 1 \text{M}$ particles

SPS1a/a' cascade at LHC

$$\tilde{q} \to q \, \tilde{\chi}_2^0 \to q \, (\tilde{\ell}\ell) \to q \, (\ell\ell) \, \tilde{\chi}_1^0$$

invar masses \Rightarrow edges / thresholds / distributions

1.) mass accuracies : $col \simeq 8 \text{ GeV} \mid non-col \simeq 5 \text{ GeV}$

- 2.) voids in *non-color* spectrum
- **3.**) strong correlations with χ_1^0

1.) mass accuracies : $col \simeq 8 \text{ GeV} \mid non-col \simeq 5 \text{ GeV}$

- 2.) voids in *non-color* spectrum
- **3.**) strong correlations with χ_1^0
- \Rightarrow three problems resolved by LC

LC

charginos, neutralinos : $e^+e^- \rightarrow \tilde{\chi}\tilde{\chi}$

Fritzsche ea, Hollik ea Majerotto ea, ..

sleptons, sneutrinos :

$$e^{\pm}e^{-} \rightarrow \tilde{\ell}\tilde{\ell}$$

Feng, Peskin, ... Freitas, Manteuffel, Z

1-loop Analysis :

dominating QED but \Rightarrow genuine SUSY \sim few per-cent

[experimentally relevant]

MASSES at LC

• edge effects:
$$\tilde{\mu}_R \to \mu + \tilde{\chi}_1^0$$

$$m_{\tilde{\ell}} = \sqrt{s} \sqrt{E_{+}E_{-}}/(E_{+}+E_{-})$$
$$m_{\tilde{\chi}_{1}^{0}} = m_{\tilde{\ell}} \sqrt{1-2(E_{+}+E_{-})/\sqrt{s}}$$

precision on χ_1^0 increased by $\sim 10^2$

• <u>threshold excitations</u>: $e^+e^- \rightarrow \tilde{\mu}_R^+ + \tilde{\mu}_R^- \rightarrow \mu^+\mu^- + E_{miss}$ P-wave: slow β^3 rise

$$e^-e^- \rightarrow \tilde{e}_R^- + \tilde{e}_R^- \rightarrow e^-e^- + E_{miss}$$

S-wave: fast β rise

6

		-		
	Mass, ideal	"LHC"	"LC"	"LHC+LC"
$\tilde{\chi}_1^{\pm}$	179.7		0.55	0.55
$\tilde{\chi}_2^{\pm}$	382.3	_	3.0	3.0
$ ilde{\chi}_1^0$	97.2	4.8	<u>0.05</u>	0.05
$ ilde{\chi}^0_2$	180.7	4.7	1.2	0.08
$ ilde{e}_R$	143.9	4.8	0.05	0.05
${ ilde e}_L$	207.1	5.0	0.2	0.2
$ ilde{ u}_e$	191.3	_	1.2	1.2
$ ilde{\mu}_R$	143.9	4.8	0.2	0.2
$ ilde{ au}_1$	134.8	5-8	0.3	0.3
$ ilde{ au}_2$	210.7	_	1.1	1.1
$ ilde q_L$	570.6	8.7	—	4.9
${ ilde t}_1$	399.5		2.0	2.0
$ ilde{t}_2$	586.3		—	
$ ilde{g}$	604.0	8.0	_	6.5
$h^{\overline{0}}$	110.8	0.25	0.05	0.05
A^0	399.4		1.5	1.5

SUMMARY:

LHC+LC

Coherent LHC+LC analyses complete and increase resolution of SUSY picture significantly

6A

Mixings and Couplings Choi ea, Freitas ea Mixing in $\tilde{\chi}^{\pm,0}$ sector: Yukawa = gauge identity: 0.03 1 $\sigma_{
m RR}$ 0.02 0.5 0.5 $\sigma_{R}\{11\}$ $\sigma_{
m LL}$ 0.01 $\sigma_{R}^{}\{12\}$ $\cos 2 \phi_R$ $\hat{g}/g - \hat{g}$ 0 0 $\sigma_{_L}\{12\}$ -0.01 $\sigma_{\!_L}\{11\}$ -0.5 -0.5 -0.02 -1 -0.004 - 0.002 = 0 $\hat{g}'/g' - 1$ 0.002 0.004 0.5 -0.5 0.5 -0.5 0 0 $\cos 2\phi_1$ $\cos 2\phi_1$

Essential SUSY elements at electroweak scale reconstructed at LHC/LC \Rightarrow

2. EXTRACTING LAGRANGIAN PARAMETERS

Gaugino, higgsino, scalar mass parameters, trilinear coupling, etc:

– basic Born analysis

Choi ea, Freitas ea

- integral LHC/LC analysis \oplus MSSM loops

Martin[1+2], Vaughn, Pierce ea

EXC	LHC	LC	LHC+LC	SPS1a
M_1	102.5 ± 5.3	102.3 ± 0.1	$102.2 {\pm} 0.1$	102.2
M_2	191.8 ± 7.3	$192.5 {\pm} 0.7$	$191.8 {\pm} 0.2$	191.8
M_3	$578. \pm 15.$	\rightarrow	$588.\pm11.$	589.4
$M_{\tilde{e}_L}$	198.7 ± 5.1	$198.7 {\pm} 0.2$	$198.7 {\pm} 0.2$	198.7
$M_{\tilde{e}_R}$	138.2 ± 5.0	$138.2 {\pm} 0.05$	$138.2 {\pm} 0.05$	138.2
$M_{\tilde{q}_L}$	$550.\pm 13.$	\rightarrow	553.3 ± 6.5	553.7
$M_{\tilde{u}_R}$	$529.\pm 20.$	\rightarrow	$532.\pm 15.$	532.1
$M_{\tilde{d}_R}$	$526.\pm 20.$	\rightarrow	$529.\pm 15.$	529.3
A_t	$-507.\pm 91.$	-501.9 ± 2.7	-505.2 ± 3.3	-504.9
μ	345.2 ± 7.3	344.3 ± 2.3	$344.4{\pm}1.0$	344.3
aneta	10.2 ± 9.1	$10.3 {\pm} 0.3$	$10.06 {\pm} 0.2$	10

SFitter: Lafaye, Plehn, Zerwas.D

 $[idem \ \underline{\text{Fittino}}: \ \text{Bechtle ea}]$

3. EXTRAPOLATION TO GUT SCALE

high-precision measurements of LE Lagrangian parameters

- \Rightarrow extrapolate to high scale: symmetries/universal behavior?
 - impact of high-scale physics?

<u>evolution</u>: RG Equations [3 loops ~ 2 loops]

(Jack ea; Martin)

minimal SUGRA

universal GUT scale parameters SPS1a/a':

gaugino mass	$M_{1/2}$	$250 { m ~GeV}$
scalar mass	M_0	$100/70~{\rm GeV}$
trilin cplg	A_0	$-100/-300 { m ~GeV}$
signum μ	$sgn[\mu]$	+
higgs mix	aneta	10

9

GAUGE COUPLINGS

<u>Evolution</u>: present elw/strong gauge couplings GigaZ: $\Delta s_W^2 / \alpha_s \leq 10^{-5/-3}$ \oplus SUSY threshold corr. ~ LHC

Grand Unification : ~ $2\sigma / g_i^U : 2\%$ ~ ~ ϵ_3 at 8σ level

[DIS] / ILC completed

	Present/"LHC"	${ m GigaZ/"LHC+LC"}$
M_{U_1}	$(2.36 \pm 0.06) \cdot 10^{16} \mathrm{GeV}$	$(2.360\pm 0.016)\cdot 10^{16}~{\rm GeV}$
αU^{-1}	24.19 ± 0.10	24.19 ± 0.05
$\alpha_3^{-1} - \alpha_U^{-1}$	0.97 ± 0.45	0.95 ± 0.12

UNIVERSALITY OF MASS PARAMETERS

Evolution : Gaugino and scalar mass parameters

 $0.4 \,\,\mathrm{GeV}$

 $357.4 \,\,\mathrm{GeV}$

 μ

• sensit. SUSY breaking

• reconstrg [PL] scenario

INTERMEDIATE SCALE

 $m_{\nu} \neq 0$: neutrino mass generated by seesaw mechnism \Rightarrow

intermediate seesaw scale $M[\nu_R] \sim 10^{10}/10^{14}$ GeV in SO(10)

affecting evolution in 3rd generation \Rightarrow <u>kink</u>

1.) Scalar masses 1 and 2 generation

2.) Scalar masses 3 generation

INTERMEDIATE SCALE

 $m_{\nu} \neq 0$: neutrino mass generated by seesaw mechnism \Rightarrow

intermediate seesaw scale $M[\nu_R] \sim 10^{10}/10^{14}$ GeV in SO(10)

affecting evolution in 3rd generation \Rightarrow <u>kink</u>

shift 3rd vs. 1/2nd generation $\tilde{\ell}, \tilde{\nu}_{\ell} : \Delta_{\nu_3} \sim M[\nu_{R3}] m_{\nu_3} \log M[\nu_{R3}] \Rightarrow$

 $M[\nu_{R3}] \sim 10^{14} \text{ GeV} [30\%]$

4. SUMMARY

1. Coherent SPA "LHC+LC" analyses <u>establish SUSY scenario</u> at electroweak scale comprehensively and with high precision: non-colored \Leftarrow per-mille level

colored \leftarrow per-cent level \leftarrow QCD and parton distributions

2. Fundamental <u>SUSY</u> theory at <u>GUT/Planck</u> scale can be reconstructed / high and intermediate scale parameters : universal mSUGRA, LR-extended, ...

P decay / ν physics / cosmology / \oplus high-precision high-energy experiments \Rightarrow

 $LHC \otimes LC \Rightarrow GUT/Planck-scale physics$

– if supersymmetry realized and mass domain favorable –