Decorrelation of Dijets at Low x and Q^2

Magnus Hansson

On Behalf of the H1 Collaboration

April 22 2006, DIS06, Tsukuba, Japan

Outline

- \Rightarrow Motivation
- \Rightarrow Selection
- $\Rightarrow\,$ MC Models and NLO Calculations
- \Rightarrow Results
- \Rightarrow Summary & Conclusions

Motivation

DGLAP: Gluon collinear with proton in LO \Rightarrow Jets back-to-back in HCM Higher order QCD radiation $\Rightarrow k_{tg} \neq 0$ and $\Delta \phi^* < 180^\circ$ Gluon propagators ordered in virtuality $\Rightarrow k_{tg}$ ordered

Small-x: New dynamics (BFKL, CCFM): 'random walk' in k_{tg} \Rightarrow Broader $\Delta \phi^*$ spectrum compared to DGLAP uPDF $\Rightarrow \Delta \phi^* < 180^\circ$ already in LO

Azimuthal Decorrelations:

- \Rightarrow Sensitive to different parton dynamics
- \Rightarrow Sensitive to unintegrated gluon density

Selection

Using 1999/2000 e^+p H1 data, $\mathcal{L}\simeq 64~{\rm pb}^{-1}$

Higher luminosity and better resolution than previous measurement (Eur.Phys.J.C33:477-493,2004)

Incl. k_T -algorithm

The two jets closest in η to the scattered electron is chosen as dijet system

MC Models and NLO Calculations

Rapgap (Dir) and Django (CDM) are used for corrections to hadron level

MC Models and NLO Calculations

NLO calculations using NLOJET++ $\,$

Scales: $\mu_r = \mu_f = \left(\frac{E_{T1} + E_{T2}}{2}\right)$ Scale Uncertainty: $\frac{1}{2}\mu_{r,f} < \mu_{r,f} < 2\mu_{r,f}$ changing both scales simultaneously PDF: CTEQ6M

Hadronization corrections using Cascade

- Infrared sensitivity \Rightarrow No NLO predictions for $\Delta \phi^* \sim 180^{\circ}$
- One parton radiation not enough (NLO 2-jet ~ effectively LO)
- Two parton radiation better (NLO 3-jet ~ effectively NLO) Systematically low for $\Delta \phi^* < 150^\circ$ but large scale uncertainties (~20 - 50%)

- Normalize to visible cross section in each x_{Bj} bin $(0^{\circ} < \Delta \phi < 170^{\circ})$ \Rightarrow Cancellation of scale uncertainties (now $\leq 20\%$)
- NLO 3-jet not in agreement with data

- Sensitivity to unintegrated gluon density
- Cascade (J2003) describes data resonably well except in lowest x_{Bj} bin
- Cascade (A0) fails in all x_{Bj} bins. A0 has too hard k_t -spectrum

 $\frac{d^2\sigma}{dx_{hj}d\Delta\phi^*}$ Data, Rapgap and Lepto(CDM)

- Rapgap Dir has right amount of back-to-back jets
- Both Rapgap Dir+Res and Lepto(CDM) predict too many back-to-back jets and too few dijets with small $\Delta \phi^*$
- Rapgap Dir+Res better at high x_{Bj}
- Lepto(CDM) better at low x_{Bj}

 $rac{d^2\sigma}{dQ^2d\Delta\phi^*}$ Data and NLOJET

NLO 3-jet systematically low for $\Delta \phi^* < 150^\circ$, but describes data within large scale uncertainties

$\frac{d^2\sigma}{dQ^2d\Delta\phi^*}$ Data, Rapgap and Lepto(CDM)

Summary & Conclusions

- Azimuthal decorrelations in dijet events measured in bins of Q^2 and in bins of x_{Bj}
- One parton radiation (NLO 2-jet) not enough to describe data
- Two parton radiation (NLO 3-jet) systematically low for $\Delta \phi^* < 150^\circ$, but within large scale uncertainties in agreement with data
- Normalise to visible cross section
 - \Rightarrow Data not within scale uncertainties of NLO 3-jet
- Data show sensitivity to the unintegrated gluon density, they prefer J2003 compared to A0
- Rapgap Dir, Rapgap Dir+Res and Lepto(CDM) fail to describe the data