DIJET (and inclusive-jet) CROSS SECTIONS IN DIS AT HERA

T. Schörner-Sadenius Hamburg University

DIS 06, 19-24 April 2006 Tsukuba, Japan

(for the ZEUS collaboration)

- Motivation
- Event and jet selection
- ¶ Data treatment, NLO theory, uncertainties
- Results
- Summary

INTRODUCTION, MOTIVATION

¶ Jets at high values of Q² in the Breit frame

- provide clean tests of pQCD (parton universality, factorisation),
- allow access to the strong coupling and to the PDFs.

The use of inclusive jets from high-Q² DIS was successful in recent ZEUS QCD fits!

¶ Compared to previous (dijet) analysis

- almost three times the statistics (82pb⁻¹),
- new kinematic regime ($E_p = 920 \text{ GeV}$).
- better analysis technique (Breit frame)
- data constrained to theoretically safer regime (high Q², higher E_T
 - \rightarrow reduced uncertainties)

¶ Especially double-differential cross sections in Q² and E_T (inclusive jets) or Q² and ξ may help to pin down further the PDFs (gluon at high ξ!).

 $\xi = x_{Bj} \left(1 + M_{jj}^2 / Q^2 \right)$

EVENT AND JET SELECTION

data treatment, uncertainties, theory

- ¶ Data: ZEUS 98-00, 81.73pb-1,
- ¶ Phase-space selection:
 - 125 < Q² (< 5000 GeV²)
 - $-|\cos\gamma_{had}| < 0.65$
- ¶ Jet reconstruction:
 - longitudinally invariant $k_{\rm T}$ cluster algorithm in Breit frame.
 - linear jet energy corrections
- ¶ Jet phase-space:
 - $--2 < \eta_{Breit} < 1.5$ $-E_{T,1(2)} > 12$ (8) GeV / 8 GeV
- ¶ Data corrections:
 - acceptance/efficiency: ARIADNE/LEPTO MC: ~10%.
 - for QED effects: about 5%.
 - for dijets Z⁰ effect negligible
 - for inclusive jets Z^0 small (<5%)

- ¶ Systematic checks:
 - alternative acceptance correction (LEPTO/ARIADNE) → ±7(8)%
 - correlated exp. uncertainty:
 jet energy scale ±1(3)% → ±5-10%
 - total uncorrelated uncertainty (mainly acceptance correction): ~10%

¶ NLO theory: DISENT with CTEQ6

¶ Hadronisation: ARIADNE MC; typically 10%.

¶ Theoretical uncertainties:

- scale: 0.5,2 μ_R \rightarrow ±5-10(20)%
- PDF: 40 CTEQ6 sets → \pm 2-5%
- $\alpha_{\rm S}$: CTEQ6AB \rightarrow less than ±4%

THEORETICAL UNCERTAINTIES

Summary

¶ Double-diff. dijet analysis:

- ξ distributions in Q^2 bins
- scale uncertainty 5-20%, large at small ξ .
- PDF uncertainty \leq 4%, significant at high ξ .

¶ Double-diff. inclusive-jet analysis:

- $E_{\rm T}$ distributions in Q^2 bins
- scale uncertainty ≤8%, decreasing with increasing Q².
- PDF uncertainty \leq 4%, significant at high E_T.

GLUON-INDUCED EVENT FRACTION

For double-differential cross sections

¶ Double-diff. inclusive-jet analysis:

- $-E_T$ distributions in Q2 bins
- gluon fraction decreases with increasing E_{T} and with increasing Q².

5

¶ Double-diff. dijet analysis:

- $-\xi$ distributions in Q² bins
- gluon fraction decreases with increasing ξ and Q².

RESULTS 1 first set of single-diff. dijet variables: Q^2 and x_{Bi} .

Data nicely described by the NLO theory. Errors dominated by theory (scale).

TSS: Jets in DIS at ZEUS

Data nicely described by the NLO theory. Errors dominated by theory (scale); sometimes energy scale uncertainty comparable.

TSS: Jets in DIS at ZEUS

RESULTS 3

last set of single-diff. dijet variables: $\eta'=0.5*|\eta_1-\eta_2|$

Data nicely described by the NLO theory. Errors dominated by theory.

TSS: Jets in DIS at ZEUS

RESULTS 4 double-differential dijet analysis

9

UН

RESULTS 5 double-differential inclusive-jet analysis

SUMMARY

- ¶ Single- and double-differential dijet (and inclusive-jet) cross sections have been measured in high-Q² DIS in 98-00 data from the ZEUS experiment (82pb⁻¹).
- ¶ The dijet data improve previous analyses:
 - larger statistics (almost factor 3 with respect to 96-97 data)
 - higher center-of-mass energy (920 versus 820 GeV)
 - improved selection (Breit frame) and tighter cuts (smaller uncertainties).
- ¶ The inclusive-jet data complement a measurement of single-differentiell inclusive-jet cross sections presented earlier.
- ¶ The data are well described by NLO QCD calculations.
- ¶ The double-differential distributions are sensitive to the gluon density in the proton and should thus serve as input to global QCD fits of the PDFs.

