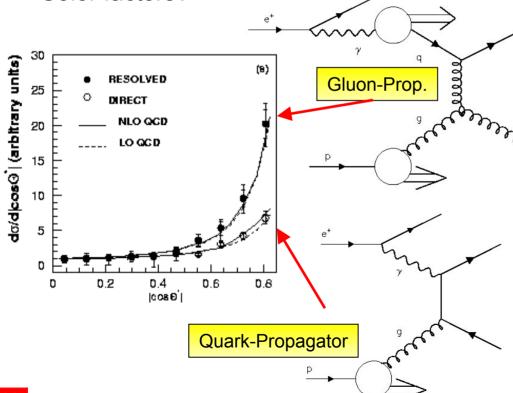
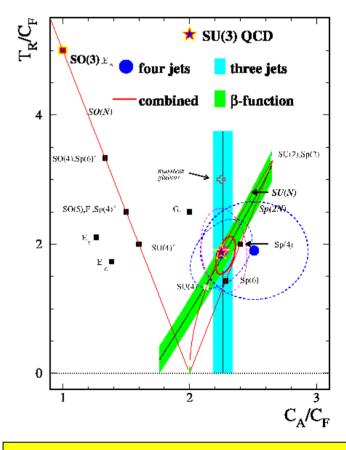
ANGULAR CORRELATIONS IN 3-JET EVENTS and SUBJET DISTRIBUTIONS AT ZEUS

Thomas Schörner-Sadenius Hamburg University

(for the ZEUS collaboration)


DIS 06 Tsukuba, April 19-24, 2006

ANGULAR CORRELATIONS

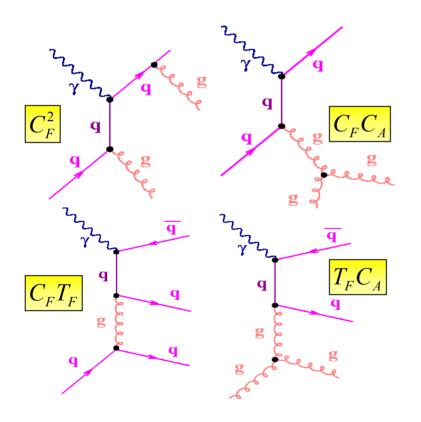

Motivation: Is it really QCD?

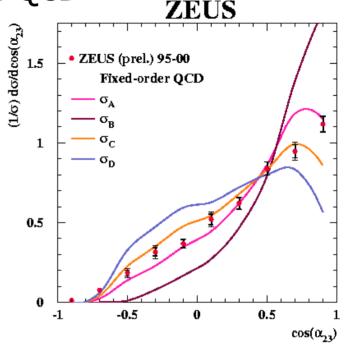
- ¶ QCD: accepted effective theory of strong interactions.
- ¶ But do we really see $SU(3)_C$?
 - non-abelian → 3-gluon vertex?
 - spin-1/2 (1) quarks (gluons)?

- Color factors?

¶ Several tests of both the color factors and the spin structure in e+e– and ep:

It seems to be QCD!
Strong interaction described by SU(3)_c!


ZEUS

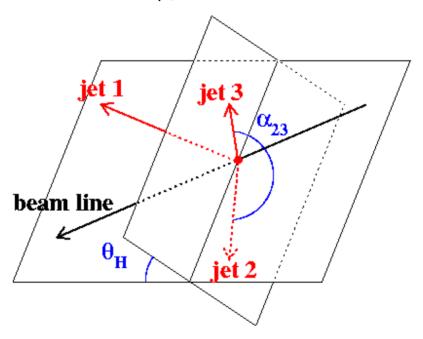

ANGULAR CORRELATIONS

Investigating the gauge structure of QCD

¶ In 3-jet production, several color factor combinations contribute to cross section:

$$\sigma_{ep \to 3jets} = C_F^2 \cdot \sigma_A + C_F C_A \cdot \sigma_B + C_F T_F \cdot \sigma_C + T_F C_A \cdot \sigma_D$$

- ¶ Data sample: DIS: 98-00: 81.7pb⁻¹, γp: 95-00: 127pb⁻¹;
- ¶ Q² > 125 GeV², $|\cos \gamma_h|$ < 0.65; (Q² < 1 GeV²), 0.2 < y < 0.85;
- ¶ At least three jets (in Breit frame) with
 - $-E_T > 14 \text{ GeV}, -1 < \eta < 2.5, x_v^{\text{obs}} > 0.7;$
 - $-E_T > 8/5/5 \text{ GeV}, -2 < \eta < 1.5;$

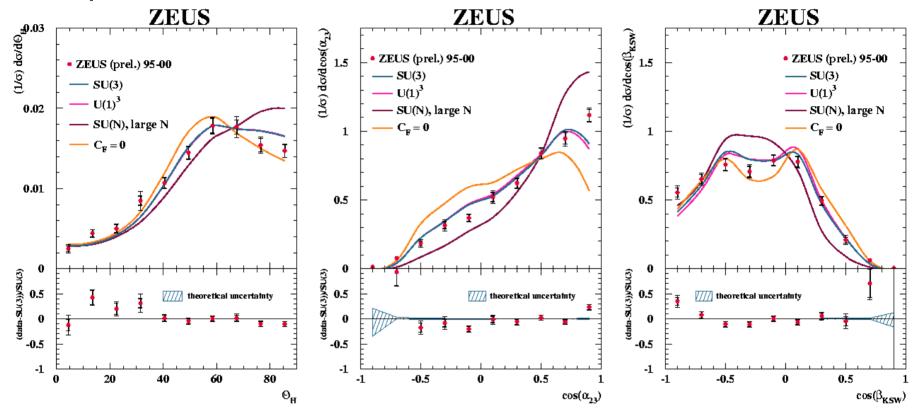


ANGULAR CORRELATIONS

Variables of interest

¶ θ_H : the angle between the planes determined by the highest E_T jet and the beam, and the two lowest E_T jets.

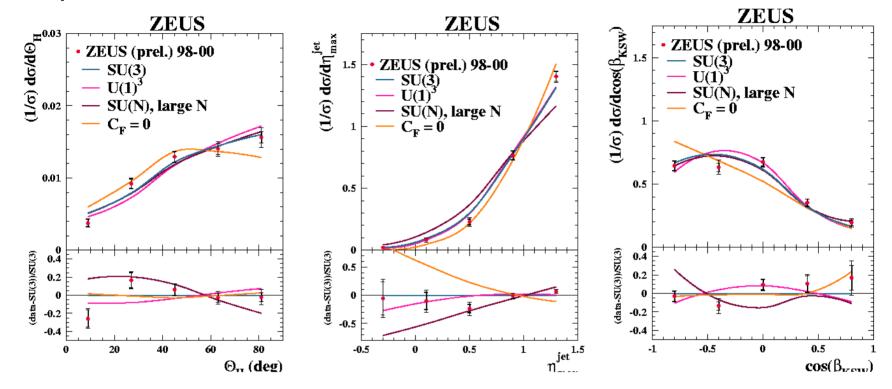
¶ α_{23} : the angle between the lowest E_T jets.


$$\P \cos(\beta_{\text{KSW}}): \quad \cos\left[\frac{1}{2}\left(\angle\left[(\vec{p}_1 \times \vec{p}_3), (\vec{p}_2 \times \vec{p}_B)\right] + \angle\left[(\vec{p}_1 \times \vec{p}_B), (\vec{p}_2 \times \vec{p}_3)\right]\right)\right]$$

 $\P \eta^{\text{jet}}_{\text{max}}$: the η of the most forward jet of the 3-jet system (only measured in DIS).

ANGULAR CORRELATIONS - PHOTOPROD.

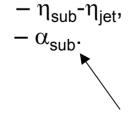
Comparisons to different theories

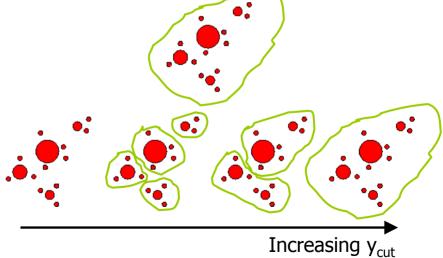

- ¶ Calculation based on $SU(3)_C$ shows good description of data (LO!).
- ¶ Comparison to calculations based on other models (adjustment of color factors) shows sensitivity to color factors!
- ¶ SU(N) in large-N limit or for $C_F=0$ clearly disfavoured.

ANGULAR CORRELATIONS - DIS

Comparisons to different theories

- ¶ Calculation based on SU(3) shows good description of data (LO!).
- ¶ U(1) 3 theory shows 10% differences to SU(3) same order of stat. errors.
- ¶ SU(N) in large-N limit or for $C_F=0$ disfavoured.




SUBJETS DISTRIBUTIONS IN DIS

Motivation: Study pattern of QCD radiation

- ¶ Tests of QCD radiation so far performed using measurements of
 - integrated / differential jet shapes $\Psi(r)$ and
 - subjet multiplicities and using LO MC models with parton shower models.
- ¶ At sufficiently high transverse energies E_{τ} fragmentation effects negligible
 - → internal jet structure can be calculated perturbatively
 - → stringent test of pQCD calculations.
- ¶ Used here: Distribution of subjets within jets. Specifically: Jets with two subjets at y_{cut}=0.05!
- ¶ Variables sensitive to subjet topology:

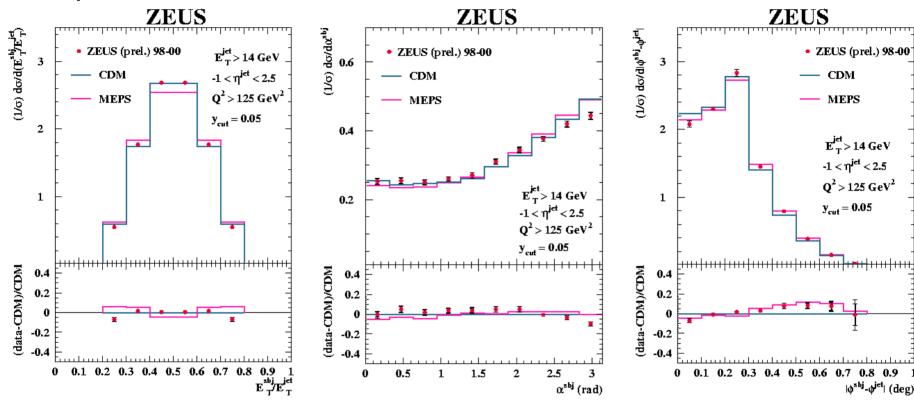
$$\begin{array}{ll} - E_{T,sub} / E_{T,jet}, & - \eta_{sub} - \eta_{jet}, \\ - |\phi_{sub} - \phi_{jet}|, & - \alpha_{sub}. \end{array}$$

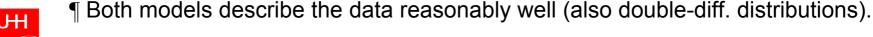
Angle (viewed from jet center) between hardest subjet and proton direction.

SUBJETS DISTRIBUTIONS IN DIS

Event and Jet Selection

- ¶ Data sample: 98-00, 81.7pb⁻¹;
- ¶ $Q^2 > 125 \text{ GeV}^2$;
- ¶ standard cleaning cuts;
- ¶ longitudinally invariant k_T algorithm in lab frame on calorimeter cells;
- ¶ at least one jet with
 - E_T > 14 GeV and
 - $-1 < \eta < 2.5$
- ¶ Exactly two subjets resolved in a jet at $y_{cut} = 0.05$ (small hadronisation corrections).

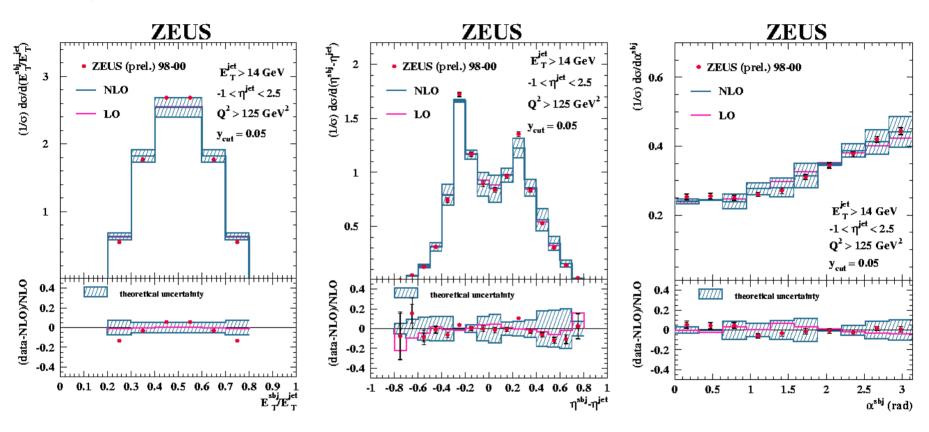

- ¶ Analysis performed in the lab frame:
- Current NLO calculations in Breit reference frame have \leq 3 partons in final state; two at most can be reconstructed in one jet jet shape at $O(\alpha_S)$.
- In lab frame, up to 3 partons can be reconstructed in one jet O(α_S²).
 → significant test of pQCD!
- ¶ Using normalized cross-sections.
- ¶ Comparison to LO MC models and NLO QCD.



SUBJET DISTRIBUTIONS

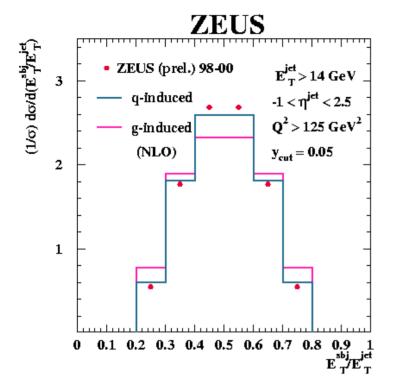
Comparison to MC models

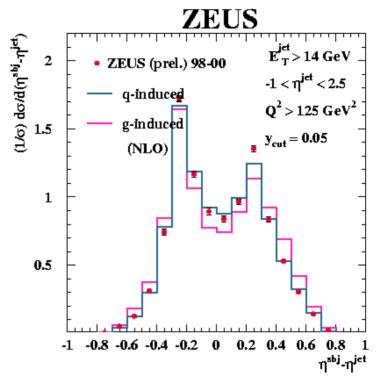
- ¶ Data show expected behaviour:
 - Symmetric behaviour of E_T^{sub}/E_T by construction (two entries per event). Subjets tend to have similar E_T values.
 - No production of subjets close together in phase-space.
 - The harder subjet tends to be in the backward direction.



SUBJET DISTRIBUTIONS

Comparison to NLO QCD


- ¶ NLO theory with up to three partons in a jet can reproduce data shapes well.
- ¶ Theory supports hypothesis of hardest subjet being in backward direction.
- ¶ Also double-differential distributions nicely described.



Gluon-induced contribution

- ¶ Slightly different shapes of quark- and gluon-induced contributions to the NLO cross section.
- ¶ Data better described by quark-induced contribution which in the phasespace considered amounts to 82%.
- ¶ Subjets arising from qg pairs seem to be more balanced in E_T and closer together than those from $q\overline{q}$ pairs.

SUMMARY

¶ HERA offers good opportunity to test QCD dynamics and radiation pattern.

- ¶ ZEUS three-jet angular correlations
 - supply access to underlying gauge group via color factor analysis
 - provide discriminating power between SU(3)_C and other theories
 - do not falsify SU(3)_c. although other groups also not excluded.

¶ ZEUS subjet distributions

- allow study of QCD radiation pattern within jets in perturbative regime
- are nicely described by NLO QCD calculations with up to three partons in one jet
- are dominated by quark-induced contributions for the phase-space region in question (and provide discrimination power between gluon- und quark-induced contributions).

