

Prompt photon plus jet photoproduction with the ZEUS detector **Eric Brownson** University of Wisconsin On Behalf of the ZEUS Collaboration DIS 2006 Tsukuba city, Japan

Prompt Photons

Prompt Photon

- γ is produced in the hard scatter
 - \rightarrow Carries information about the struck parton
 - \rightarrow No Hadronisation correction
 - → Sensitive to both quark and gluon densities
- Radiative events: Photon is radiated after the interaction

Non-Prompt Background

• Neutral mesons: Photon originates from a decay of a hadron -0

$$\pi^0 \rightarrow 2\gamma$$

Prompt photons + jets at ZEUS, Eric Brownson, U. Wisconsin

Prompt Photons + Jet in Photoproduction

Presence of a jet:

- More sensitivity to underlying partonic processes
- Introduces some hadronisation
 - Smaller hadronisation correction than dijets
- Theoretical predictions for γ +jet more reliable than low-E_t dijet studies
- Photoproduction ($Q^2 < 1$):
 - No additional P_t given to the γ +jet system by e[±]
 - The γ +jet will be back to back \rightarrow Well separated
- **Resolved contribution:**
 - γ hadronic structure
 - Constrain gluon distribution

NLO calculation available:

Theoretical Predictions

K.Krawczyk & A.Zembrzuski (KZ):

- GRV parametrisation:
 - photon structure function
 - proton structure function
 - fragmentation function

Fontanaz, Guillet & Heinrich (FGH):

- MRST01 proton structure function
- AFG02 photon structure function

A.Lipatov & N.Zotov (LZ):

Box diagram $\alpha_s^2 \alpha_{em}^2$

- K_t-factorization approach
 - Unintegrated quark/gluon densities using Kimber-Martin-Ryskin prescription

Previous analyses used shower-shape variables (e.g. D0, H1, ZEUS)

Now we use preshower detector (e.g. CDF)

- Particle decay before the preshower detector
- Use the K_t jet finder on both the photon and hadron jet
 - Keeps the hadron and the 'photon' jet on equal footing
 - Require isolation for NLO & MC ($E_t^{\gamma} / E_t^{\gamma-\text{total}}$) > 0.9

ZEUS Barrel Preshower detector (BPRE)

Scintillator tiles in front of Barrel Calorimeter

Photons

- Isolated e.m. CAL shower
- No associated track
- Low signal in BPRE

Background

- Neutral mesons (η , π^0)
- Higher BPRE signal than γ's

Modeling the BPRE

- ZEUS Deeply Virtual Compton Scattering (DVCS)
 - Provides a clean photon sample

Barrel Preshower Detector

As a particle moves from the interaction point it passes through dead material in front of the BCAL

- This leads to energy loss before measurement
- **BCAL Presampler measurement**
 - Measured energy is proportional to the number of photons, not the energy of the individual photons → Neutral meson separation

10 GeV π^0

ZEUS BPRE DVCS Sample

Event Selection

99-00 Data, 77.1 pb⁻¹ **Photoproduction Sample:** $0.2 \le Y_{IR} \le 0.8$ $Q^2 < 1 \text{ GeV}^2$ 2 or more jets from the K_t algorithm: Photon candidate: $E_{FMC}/E_{Total} \ge 0.9$ $-0.7 \le \eta^{\gamma} \le 1.1$ (BCAL region) $5.0 \le E_t^{\gamma} \le 16.0 \text{ GeV}$ No associated track Low multiplicity: # of energy flow objects Associated jet: $E_{FMC}/E_{Total} \le 0.9$ $-1.6 \le \eta^{\text{jet}} \le 2.4$ $6.0 \le E_t^{jet} \le 17.0 \text{ GeV}$ (Note the asymmetric E_t cuts)

Prompt γ & Photoproduction Background MCs

Prompt γ PYTHIA 6.3 & HERWIG 6.5 Monte Carlo models

- Only prompt photon subprocesses
- Generated with default parameters
- CTEQ5L proton structure function & SaS-2D parameterization for photon structure
- Both direct and resolved events were generated
- Full detector simulation
 - Improved dead material map
- Also used for hadronisation correction of KZ, FGH and LZ
- Fully inclusive photoproduction sample
 - w/o Prompt photon subprocesses
 - Used to model hadronic background
 - i.e. Photons originating from the parton shower & resonance decays
 - Combine with prompt photon MC according to BPRE distribution

MC samples were re-weighted in \textbf{E}_{t} and η for hadronisation and acceptance corrections

Photoproduction background

Fit sum of prompt γ MC & background MC to BPRE signal

- Determine relative amounts
- Done bin-by-bin for E_t's, η's and Xγ distributions
- Large fraction of events with <1 MIP (Similar to the DVCS sample) \rightarrow high purity

Examine calorimeter based variables

- $\Delta E = E_{Total} E_{(\gamma + jet)}$
- D = Distance (in ηφ) from γ to energy flow objects
- Both are well reproduced by the sum of MCs

ZEUS

Photoproduction of prompt photons with accompanying jet measured for 77.1 pb⁻¹ of data:

 $\sigma(e^{\pm}p \rightarrow e^{\pm} + prompt + jet + X) = 33.1\pm3.0 \text{ (stat.)} \frac{+4.6}{-4.2} \text{ (syst.) pb}$

- Q² <1 GeV² , $0.2 \le Y_{JB} \le 0.8$
- 5.0 $\leq \mathrm{E}_t^{\gamma} \leq$ 16.0 GeV , -0.7 $\leq \eta^{\gamma} \leq$ 1.1 , (E_t^{\gamma} / E_t^{\gamma\text{-total}}) > 0.9
- 6.0 \leq E_t^{jet} \leq 17.0 GeV , -1.6 \leq η^{jet} \leq 2.4

Theoretical predictions:

• (After hadronisation Correction)

PYTHIA	19.98 pb
HERWIG	13.54 pb
KZ	23.31 pb
FGH	23.52 pb
LZ	30.73 pb

Compare Photon Kinematics

Data:

 Corrected for acceptance to the hadron level

HERWIG & PYTHIA:

- Do not rise as steeply as data at low $\mathsf{E}_t^{\scriptscriptstyle\gamma}$
- Underestimate the measured cross section

KZ & FGH:

 Improved agreement with the measured cross section, but deviates at low E_t^γ

LZ:

- Improves description for $E_t{}^\gamma$ and low η^γ

Compare Jet Kinematics

Data:

Corrected for acceptance to the hadron level

HERWIG & PYTHIA:

- Low E^{jet} & Forward jets not well described
- Significantly underestimate the measured cross section

KZ & FGH:

LZ:

- Improved agreement with the measured cross section, below data for Low E^{jet}
- Improved description of forward jet region

X_y Cross Section

Data:

 Corrected for acceptance to the hadron level

HERWIG & PYTHIA:

 Significantly underestimate the measured cross section

KZ & FGH:

- Improvement compared to LO MC, particularly at high X_{γ} (Direct contribution)

LZ:

 Improvement for low X (Resolved contribution)

Photoproduction of prompt photons with accompanying jet measured for 77.1 pb⁻¹ of data:

 $\sigma(e^{\pm}p \rightarrow e^{\pm} + \text{prompt} + \text{jet} + X) = 33.1 \pm 3.0 \text{ (stat.)} \frac{+4.6}{-4.2} \text{ (syst.) pb}$ First time ZEUS used a preshower detector to identify prompt photons

PYTHIA & HERWIG have different shapes and normalizations than the data

Difference with KZ calculations, especially in the forward jet region (low E_{t} region)

FGH NLO calculations agree better in the forward jet region than KZ NLO QCD

Possible indication for high-order QCD contributions

K_t-factorization calculations (LZ) closer to the data than the traditional NLO