

New resonances and spectroscopy(Belle).

A.Kuzmin for Belle collaboration April 22, 2006

Outline:

- Experimental environment
- New resonance production on B-factories
- ullet Broad D^{**} and D_{sJ}
- Charmonium and charmonium like states
- Summary

A. Kuzmin April. 22, 2006

KEKB, Belle detector

- 3.5 GeV $e^+ \times 8.0$ GeV e^- .
- $\mathcal{L}_{\max} = 1.6 \times 10^{34} cm^{-2} s^{-1}$
- Continuous injection $\rightarrow 1.1 \, \text{fb}^{-1}/\text{day.}$
- $\int \mathcal{L} dt \approx 560 \, f b^{-1}$

- Sil.VD: 3(4) layers DSSD
- CDC : small cells $He + C_2H_6$
- TOF counters.
- Aerogel CC: $n = 1.015 \sim 1.030$
- CsI(Tl) 16 X_0
- SC solenoid 1.5 T
- $\mu K_L detection$ 14-15 layers RPC+Fe

Particle production at B factories

Production from B-decay (broad D^{**} , D_{sJ} , X(3872), Y(3940))

Production from continuum $(D_{sJ}, \eta_c(2S), X(3940), \Sigma(2800))$

Two-photon production (Z(3930))

Initial state radiation

$B ightarrow oldsymbol{D}^{**} \pi, oldsymbol{D}^{**} ightarrow oldsymbol{D}^{(*)} \pi$							
$D^{**} \rightarrow D^{(*)}\pi$ have different dependences							
$D_2^* ightarrow$	$D\pi,$	$D^{*}\pi$	D-wave				
$D_1 ightarrow$		$D^{*}\pi$	D-wave				
$D_1' \rightarrow$		$D^{*}\pi$	S-wave				
$D_0^* ightarrow$	$D\pi$		S-wave				
In B decay fixed initial state spin 0.							

D-wave
P-wave
P-wave
S-wave

All D^{**} states can be distinguished using Dalitz plot analysis

Test of HQET and QCD sum rule predictions.

PRD 69, 112002,2004

A. Kuzmin April. 22, 2006

$\bar{B^0} \to D^0 \pi^+ \pi^-$ Dalitz plot analysis.

 $\cos \theta_h > 0$

A. Kuzmin April. 22, 2006

A. Kuzmin April. 22, 2006

The production of $D_{j=3/2}^{**+}\pi^-$ in B^0 decay are comparable with $D_{j=3/2}^{**0}\pi^-$ in B^+ decay. $D_{j=1/2}^{**+}\pi^-$ production in B^0 decay is at least 5 times lower than in B^+ decay.

	$ar{B}^{m{0}}$	<i>B</i> ⁻
$\mathcal{B}(\bar{B} \to D_2^*\pi^-)\mathcal{B}(D_2^* \to D^*\pi) \times 10^4$	$2.45 \pm 0.42 \substack{+0.35 + 0.39 \\ -0.45 - 0.17}$	$1.8 \pm 0.3 \pm 0.3 \pm 0.2$
$\mathcal{B}(\bar{B} \to D_1 \pi^-) \mathcal{B}(D_1 \to D^* \pi) \times 10^4$	$3.68 \pm 0.60 {+0.71 + 0.65 \atop -0.40 - 0.30}$	$6.8 \pm 0.7 \pm 1.3 \pm 0.2$
$\mathcal{B}(\bar{B} \to D_2^* \pi^-) \mathcal{B}(D_2^* \to D\pi) \times 10^4$	$2.15 \pm 0.17 \pm 0.29 \pm 0.12$	$3.4 \pm 0.3 \pm 0.6 \pm 0.4$
$\mathcal{B}(\bar{B} \to D_1' \pi^-) \mathcal{B}(D_1' \to D^* \pi) \times 10^4$	< 0.7 at 90 %CL.	$5.0 \pm 0.4 \pm 1.0 \pm 0.4$
$\mathcal{B}(\bar{B} \to D_0^* \pi^-) \mathcal{B}(D_0^* \to D \pi) \times 10^4$	$0.60 \pm 0.13 \pm 0.15 \pm 0.22$	$6.1 \pm 0.6 \pm 0.9 \pm 1.6$

 $au_{3/2} >> au_{1/2}$

 $f_{D_{3/2}} << f_{D_{1/2}}$

For broad D^{**} production Color suppressed amplitude dominates. Branching is comparable with BaBar measurement $\bar{B^0} \rightarrow D_1^{\prime 0} \omega$ (hep-ex/0604009)

Figures: Courtesy of David Williams

j = 1/2 states with $M > M_{D^{(*)}} + M_K$ have large widths.

- BaBar first observed $D_{sJ}^+(2317) \to D_s^+\pi^0$ decay in e^+e^- continuum.
- CLEO confirmed $D_{sJ}^+(2317)$ and established $D_{sJ}^+(2460)$.
- Width of the states are consistent with detector resolution.
- Belle confirmed BaBar and CLEO results.

 $D^+_{sJ}(2317) o D^+_s \pi^0 \qquad D^+_{sJ}(2460) o D^{+*}_s \pi^0$

$$D^+_{sJ}(2460) o D^+_s \gamma$$

Y.Mikami, et al.(Belle Collaboration), PRL 92, 012002 (2004)

A. Kuzmin April. 22, 2006

• Study angular distributions of D_{sJ} produced in *B*-decays allows to determine their quantum numbers

 $J^P = 0^+$ for $D^+_{sJ}(2317)$ and $J^P = 1^+$ for $D^+_{sJ}(2460)$

ICHEP04 11-0711 (update of PRL 91, 262002(2003))

A. Kuzmin April. 22, 2006

Charmonium production in B decay

- Cabbibo favored decay
- B Kinematic Reconstruction
 - Beam energy constrained mass

$$m_{
m bc} = \sqrt{E_{beam}^2 - |\sum ec{P_i}|^2}$$

- Energy difference

$$\Delta E = \sum E_i - E_{beam}$$

X(3872) production.

Observed by Belle PRL91,262001(2003)(152 M $B\bar{B}$) in B decays. (confirmed by DO, CDF, Babar)

 $M(\pi^{+}\pi^{-}I^{+}I^{-}) - M(I^{+}I^{-})$ (GeV)

275 MB \bar{B} hep-ex/0505038

 $M = 3872.4 \pm 0.6 \pm 0.5 \text{ MeV/c}^2$ $\Gamma < 2.3 MeV$ $Br(B \rightarrow XK) \times Br(X \rightarrow \pi^+\pi^-J/\psi)$ $= (1.31 \pm 0.24 \pm 0.13) \times 10^{-5}$ $M(\pi\pi)$ is consistent with ρ . (Large isospin violation)

A. Kuzmin April. 22, 2006

 $B \to K \pi^+ \pi^- \pi^0(\omega) J/\psi$ $B \to K \gamma J/\psi$ 20 16 N=12.4±4.2 (4σ) N=13.6±4.4 (4σ) Events/bin Events/25 MeV 8 0 0 4120 3928 3736 605 Μ(π⁺π⁻π⁰) (MeV) 730 480 $M(\gamma J/\psi)$ (MeV)

275 ${\rm M}B\bar{B}$ hep-ex/0505037

$$rac{Br(X o \pi^+ \pi^- \pi^0 J/\psi)}{Br(X o \pi^+ \pi^- J/\psi)} = 1.1 \pm 0.4 \pm 0.3 \ 3\pi - ext{virtual} \ \omega$$

C(X(3872)) = +1

 $\frac{Br(X \to \gamma J/\psi)}{Br(X \to \pi^+\pi^- J/\psi)} = 0.14 \pm 0.05 \text{ (Small for } c\bar{c}\text{)}$

A. Kuzmin April. 22, 2006

X(3872) angular distributions

 $B
ightarrow K \pi^+ \pi^- J/\psi$

 $0^{-+}, 0^{++}$ - quantum numbers are disfavored

A. Kuzmin April. 22, 2006

$$X
ightarrow
ho^0 J/\psi
ightarrow \pi^+\pi^- J/\psi$$

Even parity: S-wave; Odd parity: P-wave

 $\pi\pi$ spectrum is more consistent with S-wave

S-wave $\chi^2/Ndf = 43/39$ P-wave $\chi^2/Ndf = 71/39$

 1^{++} is strongly favored over 1^{-+}

A. Kuzmin April. 22, 2006

Preliminary results $B \to D^0 \bar{D^0} \pi^0 K$

An excess of events with $M(D^0 \overline{D^0} \pi^0) \approx M_X$ $2^{++} - >$ one combination *D*-wave strong suppression near threshold rule out 2^{++}

 $J^{PC}(X(3872)) = 1^{++}$

• χ'_{c1} ?

- Predicted χ'_{c1} mass 100 MeV higher.
- Small $\Gamma(J/\psi\gamma)/\Gamma(J/\psi\pi\pi)$ disfavor $\chi_{c1}^{\prime}(0.14,\,\mathrm{expected}\,\sim 30)$
- $D\bar{D^*}$ bound state models?
 - Isospin violation is predicted
 - $\ \Gamma(J/\psi \gamma) < \Gamma(J/\psi \pi \pi) ext{ is predicted}$

Further study is necessary

Y(3940) production

 $B \rightarrow K \omega J/\psi$ PRL94,182002(2005)

 $N = 58 \pm 11(> 8\sigma)$ $M_Y = 3943 \pm 11 \pm 13 \text{ MeV}$ $\Gamma_Y = 87 \pm 22 \pm 26 \text{ MeV}$ $Br(B \to KY)Br(Y \to \omega J/\psi) =$ $(7.1 \pm 1.3 \pm 3.1) \times 10^{-5}$

- Radially excited $c\bar{c}$?
 - Large $Br(Y \to \omega J/\psi)$ $D^{(*)}D^{\overline{(*)}}$ decay modes expected to be dominated
- $c\bar{c}$ -gluon hybrid?
 - $D^{(*)}D^{\overline{(*)}}$ suppression
 - predicted masses 4.3 4.5 GeV

 $L \approx 357 \ fb^{-1} \ , \ hep-ex/0507019 (submitted to PRL)$ Reconstruction $J/\psi \rightarrow l^+l^-$ Observation in J/ψ recoil mass: $M_{rec} = \sqrt{(E_{CM} - E_{J/\psi}^*)^2 - p_{J/\psi}^*}^2$

A. Kuzmin April. 22, 2006

Z(3930) two photon production

 $L \approx 395 \ fb^{-1}$, PRL 96, 082003 (2006)

- un-tagged $\gamma \gamma \rightarrow D\bar{D}$ events
- $D^0 \to K^- \pi^+, \ K^- \pi^+ \pi^0, \ K3\pi, \ D^+ \to K^- \pi^+ \pi^+$
- $P_t(D\bar{D}) < 0.05 GeV/c$

 $\Gamma_{\gamma\gamma}(Z)Br(Z
ightarrow Dar{D}) = 0.18 \pm 0.05 \pm 0.03 \; keV$

The observed state is χ'_{c2}

D

A. Kuzmin April. 22, 2006

- B-factories are a unique source of new particles.
- Many new states were discovered (many unexpected).

• New data promises more intresting results.

state	production	decay mode	quantum	reference
			numbers	
broad D^{**}	$B o D^{**}\pi$	$D^{**} ightarrow D^{(*)} \pi(\pi)$	$0^+/1^+$	PRD69,112002
				hep-ex/0412072
D_{sJ}	continuum,	$D_s\pi^0,\ D_s^*\pi^0,$	$0^+/1^+$	BELLE-CONF-0461
	$B ightarrow D_{sJ}K, \; D_{sJ}ar{D}$	$D_s\gamma$		$\mathrm{hep} ext{-}\mathrm{ex}/0507064$
$\eta_c(2S)$	continuum	M_{recoil}	_	PRD(R) 70,071102
X(3872)	B o KX	$\pi^+\pi^- J/\psi$	1++?	PRL91,262001(2003)
		$\pi^+\pi^-\pi^0(\omega)J/\psi$		$\mathrm{hep} ext{-}\mathrm{ex}/0505038$
		$\gamma J/\psi$		$\mathrm{hep} ext{-}\mathrm{ex}/0505037$
χ_{c2}	$\gamma\gamma$	$Dar{D}$	2++	$\mathrm{hep} ext{-}\mathrm{ex}/0512035$
X(3940)	continuum	$M_{recoil}, \; Dar{D}$	—	$\mathrm{hep} ext{-}\mathrm{ex}/0507019$
Y(3940)	B o KY	$\omega J/\psi$	—	PRL94, 182002(2005)