Inclusive Jet Production in Deep Inelastic Scattering at high Q2 at HERA

THE UNIVERSITY of LIVERPOOL

Steve Maxfield for H1

Thomas Kluge Wenbiao Yan

- [•]Inclusive Jet production and α_s
- Data Selection and cross section measurement
- [•]QCD analysis and extraction of α_s
- Conclusions

Results are preliminary

Inclusive Jet Cross-sections

- Inclusive jet cross-section in NC DIS.
 - High statistics, IR safe source of information on QCD
 - Relatively small systematic uncertainties and few non-perturbative complications
 - [•] Sensitivity at order α_s

Born level

QCD Compton

Boson gluon fusion

Jet Definition

- Perform jet finding in *Breit Frame* so that:
 - Jet production cross section factorises
 B. R. Webber, J. Phys. G19 (1993) 1567.
 - Lowest order with high E_t jets is already $\mathcal{O}(\alpha_s)$.

Use Longitudinally invariant, factorisable k_t algorithm.

S. Catani, Yu.L. Dokshitzer, M.H. Seymour and B.R. Webber, C Nucl. Phys. B406(1993)187.

$$E_t > 7 \text{ GeV}$$
 -1.0 < $\eta^{\text{Lab}} < 2.5$

DIS 2006, Tsukuba City, Japan

Event Selection and Correction Procedure

- 61.25 pb⁻¹ collected in 1999-2000 at cms energy \sqrt{s} = 319 GeV
- Identify high Q² DIS events using scattered electron. Kinematic variables reconstructed using "electron-Σ" method

• Require:

• E_e' > 11 GeV, θ_e < 153°

• 45 GeV < $\sum (E-p_z)$ < 65 GeV (sum over hadrons + electron)

⇒ Correct data for detector resolution, acceptance losses and QED radiative effects [•]DIS quantities in LO Monte Carlos compared to the data

Distributions are normalised to 1.

Jet E_t distributions in LO Monte Carlos compared to the data.

distributions are normalised to 1.

Correction procedure continued...

Bins chosen such that purities and stabilities > 50% justifying...

- ...bin-by-bin correction procedure
- Correction factors determined from LO MC event generators
 - Django 1.2 (Ariadne, CDM)
 - Rapgap2.8 (LO ME + PS)

• \Rightarrow Factors within 20% of unity, model dependence < 10%.

 $C \equiv (C^{Django} + C^{Rapgap})/2$ $\delta C \equiv (C^{Django} - C^{Rapgap})/2$

NLO QCD Calculations

• NLOJET++ Z. Nagy and Z. Trocsanyi, Phys. Rev. Lett. 87 (2001)

• \overline{MS} Scheme

•Renormalisation scale, $\mu_r = E_t^2$. Factorisation scale $\mu_f = Q^2$

•2-loop $\alpha_{\rm S}(\mu_{\rm r})$ evolution, 5 active flavours. $\alpha_{\rm S}({\rm M_Z})$ fixed at 0.118

•CTEQ5M1 PDFs for proton.

• Estimate scale uncertainties by canonical variation: $0.25 < \mu_r^2 / E_t^2$, $\mu_f^2 / Q^2 < 4.0$

Correct predicted parton level cross-sections for hadronisation

 $(1 + \delta_{had}) = \sigma_{had} / \sigma_{part}$

 Use the LO MCs (without QED radiation) to determine corrections and uncertainties.

Corrections typically ~10%

Results I

Good description of data over full E_t range and all Q² ranges

DIS 2006, Tsukuba City, Japan

Results II

do_{jet}/dQ² (pb/GeV²) H1 prelim. 99-00 1 NLO (1+ δ_{had}) total Φ statistical (0.25 - 4.0) $\mu_{r,f}^2$ **10**⁻¹ 1.2 Data/Theory 1.1 0.9 0.8 3000 Q² (GeV²) 300 1000

Good description of data over full Q² range

DIS 2006, Tsukuba City, Japan

Results III

Good description of data over full E_t range

DIS 2006, Tsukuba City, Japan

Determination of $\alpha_{s}(M_{z})$

- Use NLOJET++ to predict dependence of cross-section on $\alpha_{s}(M_{z})$ through matrix element and PDF in each measurement bin.
- Parameterize as $\sigma_{bin}(\alpha_s(M_Z)) = A_{bin} \cdot \alpha_s(M_Z) + B_{bin} \cdot \alpha_s^2(M_Z)$

(Cf ZEUS Physics Letters B 507 (2001) 70-88Z; Enrico Tassi (Hamburg U.),. DESY-THESIS-2001-059, Dec 2001.)

Results IV

•Extracted values of $\alpha_{s}(M_{z})$

• Evolve with two-loop RG equation to $\alpha_{s}(E_{t})$

DIS 2006, Tsukuba City, Japan

Results V

•Make combined fit to single $\alpha_{s}(M_{z})$ value (χ^{2} ndf =20.14/14) \Rightarrow

 $\alpha_{S}(M_{Z}) = 0.1197 \pm 0.0016(\exp_{-0.0048})^{+0.0046}(\text{th.})$

Largest contributions to errors:

Expt. LAr energy scale, model dependence

Theory. Renormalisation and factorisation scales

Conclusions

- H1 has measured the inclusive jet cross section in DIS e⁺p scattering in the range 150 < Q² < 5000 GeV² for jets with transverse energy > 7 GeV.
- NLO QCD predictions provide a sound description of the data.
- The strong coupling constant $\alpha_{s}(M_{z})$ has been measured:

 $\alpha_{S}(M_{Z}) = 0.1197 \pm 0.0016(\exp_{-0.0048})^{+0.0046}(\text{th.})$

consistent with the world average.