W + jet production at CDF

Andrea Messina

XIV International Workshop on Deep Inelastic Scattering

Tsukuba 20-24 April 2006

OUTLINE

- Why boson + jet
- W + jet measurement
 - \checkmark observable definition
 - ✓ background estimate
 - $\checkmark \sigma$ (W+jet) results
 - ✓ systematic errors
- conclusions & plans

Motivation II

Testing ground for pQCD in multijet environment

- \checkmark The presence of a boson:
 - Ensures high Q² pQCD
 - Large BR into leptons easy to detect experimentally
- ✓ Study the underlying event in an alternative topology than inclusive jets

 \checkmark Key sample to test LO and NLO calculations

- Pythia, Herwig: shower, ME(W & W + 1parton)
- AlpGen, Sherpa, MadGraph: W + multi-parton ME & matching algorithm (ckkw/MLM) with shower
- CompHep, Gr@PPA: W + multi-parton ME with shower
- MCFM: NLO ME W + 1 or 2 partons
- MC@NLO: W+X (NLO ME + herwig shower)

Experiment apparatus

- record peak Lumuminosity 1.7x10³² [cm⁻²s⁻¹]
- \approx 1.6 fb⁻¹ delivered
- \approx 25 pb⁻¹/week

W + jet measurement at CDF - DIS2006 Tsukuba, April 22

p-pbar collisions, 36 bunches-396 ns
 √s=1.96 TeV (RunI 1.8)

W + jet measurement definition

 $\checkmark \sigma(W \rightarrow ev + jet)$ vs jet E_{T_i} jet-jet DR and invariant mass. \checkmark Be as much as possible independent of theoretical models.

✓ This is not an EWK measurement: the W is a clean signal for high Q² events within which we can examine jet kinematics.

W + jet measurement definition

High P_T electron trigger 320pb⁻¹ \Rightarrow Identify W, reconstruct jets

 \checkmark In each bin of the jet E_{T} distribution compute:

$$\sigma = \frac{N^{cand} - N^{bkgd}}{A \bullet \varepsilon_{ID}} \bullet L$$

- \checkmark Background: QCD, W-> τv , Z->ee, WW, top, extra interactions
- ✓ Acceptance largely independent of theoretical model
- Never rely on MC for rates, for shapes assign a model dependence error by comparing to data or largely vary MC parameters.

Acceptance and Efficiency

- \checkmark Define xsec phase space as the W detector acceptance
 - Events migrate across acceptance boundary: convolution of local shape and resolution
- \checkmark Use MC for acceptance and electron ID efficiency
 - Systematic on ID efficiency comparing Z MC and data
 - Systematic on acceptance from different MC models

 $A \bullet \mathcal{E}_{ID} \approx 0.6 \pm 0.03$ largely flat as function of jet kin

Background

CDF W+jet cross section measurement

Differential xsec wrt jet E_T in each of the 4 W+ n jet inclusive samples

Integrated xsec wrt jet E_{τ} in each of the 4 W+ n jet inclusive samples

MC have been normalized to inclusive data cross section in each jet sample!

CDF W+jet cross section measurement

Differential xsec wrt di-jet invariant mass in the W+ 2 jet inclusive samples Differential xsec wrt di-jet ΔR in the W+ 2 jet inclusive samples

MC have been normalized to measured W+2 jet inclusive cross section!

🕦 Background breakdown in jet E_T

QCD gives a substantial contribution to the background fraction
In the tail of the distribution (high jet multpl., High E_T) top is dominant

Promotion background (small contribution at low E_{T}):

- \checkmark extra interaction produce jet not associated to the W -> wrong W jet-multipl.
- ✓ Estimate extra jet rate in MB, correct data on average as a function of # vtx

Error breakdown

A representative behavior of the errors in the measurements

At high E_{τ} large statistic uncertainty. Systematic dominated by jet energy scale($\approx 3\%$) at low E_{τ} , by background subtraction at high E_{τ} .

Work in progress and Plans

 \checkmark Extend the measurement muons and to 1fb⁻¹:

- \blacklozenge Larger E_{τ} range, more sensitive to the tail of the cross section
- Better control on data driven background subtraction

✓ Measure Z+jet cross section and study the underlying event: it is and it will be a crucial issue in the LHC era

Conclusions

New measurements of $\sigma(W+jets)$ vs jet kinematics with 320pb⁻¹ These measurements more suitable for data/theory comparison:

- Hadron level measurement
- Reduced model dependence on acceptance/efficiency

LO/NLO MC calculation

Are not exact, may work in different regimes
parameters need to be tuned on data

The systematic on many high p_T measurements receives substantial contribution from boson+jet knowledge, crucial to have a robust simulation of boson+jets to explore for new physics at Tevatron & LHC

Jet correction and systematics

Jet definition: JetClu (cone based) E_T^{corr} > 15GeV |η|<2

Calorimeter jets, correct: ✓ resolution & efficiency ✓ pile-up interactions (<3.6> interactions @ 10³²cm⁻²s⁻¹) Hadron jets account for: ✓ underlying event ✓ fragmentation/hadronization

- Jet corrected to hadron level, systematic < 3%
- \bullet Resolution and jet spectrum dependence addressed with additional unfolding on corrected jet $E_{\rm T}$ distribution