# Three- and four-jet states in photoproduction at HERA.

Tim Namsoo (University of Bristol) - for the ZEUS collaboration

DIS2006, Tsukuba city, Japan.

- Motivation
- Variable definitions
- Cross section definition
- Monte Carlo curves
- Results:
  - compared to Monte Carlo
  - compared to  $\mathcal{O}(\alpha \alpha_s^2)$  pQCD
- Summary



## **Motivation**

- $7.5 \times$  more lumi than existing 3-jet PHP results.
- 3-jets studied in more inclusive phase-space region.
- No published 4-jet PHP results by ZEUS or H1.
- Test of pQCD in PHP at high orders of  $\alpha_s$ :
  - n-jet direct PHP is  $\mathcal{O}(\alpha \alpha_s^{(n-1)})$  (tree-level)
  - highest order PHP theory is  $\mathcal{O}(\alpha \alpha_s^2)$  (3-jet)
  - in anticipation of  $\mathcal{O}(\alpha \alpha_s^3)$  pQCD in PHP
  - highest order process studied at HERA
- Test of parton showers (LLA) used to simulate multijet states in (LO ME+PS) Monte Carlos.
- Appear sensitive to MPIs  $\rightarrow$  test/tune MPI models.
- Multi-jet HFS and MPIs will be abundant at the LHC & next generation colliders.



## Variable definitions

• 
$$M_{\rm nj} = \sqrt{(\sum_i^{\rm n} p_i)^2}$$

• 
$$x_{\gamma}^{\text{obs}} = \sum_{i}^{\mathsf{n}_{\text{jet}}} \frac{E_{\text{t,i}} \exp(-\eta_i)}{2yE_e}$$

#### multi-jet variables:

- S. Geer & T. Asakawa (Phys. Rev. D53, 4793 (1996))
- evaluated in n-jet COM frame with multi-jet numbering
- n-jet state collapsed into pseudo-3-jet state

• 
$$\cos(\Psi_{3^{(\prime)}}) = \frac{(\mathbf{p}_{\text{beam}} \times \mathbf{p}_{3^{(\prime)}}) \cdot (\mathbf{p}_{4^{(\prime)}} \times \mathbf{p}_{5^{(\prime)}})}{|\mathbf{p}_{\text{beam}} \times \mathbf{p}_{3^{(\prime)}}| |\mathbf{p}_{4^{(\prime)}} \times \mathbf{p}_{5^{(\prime)}}|}$$

• 
$$\cos(\theta_{3^{(\prime)}}) = \frac{\mathbf{p}_{\mathsf{beam}} \cdot \mathbf{p}_{3^{(\prime)}}}{|\mathbf{p}_{\mathsf{beam}}||\mathbf{p}_{3^{(\prime)}}|}$$

• 
$$X_{\mathbf{i}^{(\prime)}} = \frac{2E_{\mathbf{i}^{(\prime)}}}{E_{\mathbf{3}^{(\prime)}} + E_{\mathbf{4}^{(\prime)}} + E_{\mathbf{5}^{(\prime)}}}$$

schematic of 3-jet angles



 $\mathbf{p}_{\mathsf{beam}} = \mathbf{p}_{\mathsf{elec}} - \mathbf{p}_{\mathsf{prot}}$ 

DIS2006, Japan.

#### T. Namsoo

## Cross section definition

- Jet requirements (lab frame)
  - $E_T^{\text{jet}_{1,2}} > 7 \text{ GeV}$
  - $E_T^{\text{jet}_{3,4}} > 5 \text{ GeV}$
  - $|\eta^{\rm jet}| < 2.4$
- Kinematic region
  - 0.2 < y < 0.85
  - $Q^2 < 1.0 \ {\rm GeV}^2$
  - $-\cos(\theta_{3^{(\prime)}}) < 0.95$
  - $-X_{3^{(\prime)}} < 0.95$
- Jets: inclusive  $k_T$  algorithm & massless
- Two mass regions studied:
  - semi-inclusive ( $M_{\rm nj} \ge 25~{\rm GeV}$ )
  - high mass ( $M_{\rm nj} \ge 50~{\rm GeV}$ )

## Monte Carlo curves

- PYTHIA 6.2 & HERWIG 6.5 both with & without MPIs
  - PYTHIA MPIs from simple model.
  - HERWIG MPIs from JIMMY 4.0 model.
- PYTHIA MPIs tuned to collider data (JETWEB).
- HERWIG MPIs tuned to ZEUS multi-jet data.
- MC scale factors = data/(MC no MPIs) at  $M_{nj} > 70$  GeV.



### ZEUS

#### T. Namsoo



- cross sections peak at  $x_{\gamma}^{\text{obs}} \approx 0.9$ , and are kinematically suppressed at low  $x_{\gamma}^{\text{obs}}$ .
- MC predicts peaks partly due to direct (LO definition) but significant resolved PHP contributions.
- MCs without MPIs fail to describe low  $x_{\gamma}^{obs}$  region at low  $M_{3j}$  MC requires additional component.
- MC predicts MPIs augment low  $x_{\gamma}^{obs}$  but don't affect high  $x_{\gamma}^{obs}$  are MPIs the missing component?
- PYTHIA MPI model predicts excessive contribution HERWIG+MPI describes  $x_{\gamma}^{obs}$  very well.
- T. Namsoo



• again, cross sections peak at  $x_{\gamma}^{obs} \approx 0.9$  and low  $x_{\gamma}^{obs}$  kinematically suppressed... BUT...

- ...smaller direct contribution and less suppression even though four-jet HFS more tightly constrained.
- MCs predict that differences at low  $x_{\gamma}^{obs}$  are due to larger missing component/more MPIs... BUT...
- ...high  $x_{\gamma}^{obs}$  region is insensitive to MPIs so not the sole reason for larger resolved contribution.
- resolved processes have more complex colour structure generate multi-jet states more efficiently.

## ZEUS



- from now on will assume that the missing component from the MCs without MPIs is due to MPIs.
- cross sections fall exponentially with increasing  $M_{nj}$  low  $M_{nj}$  suppression due to selection criteria.
- MC predicts MPIs augment low  $M_{nj}$  cross section reduce the effects selection criteria.
- PYTHIA MPI excess still apparent. HERWIG MPIs good no MPIs for  $M_{3j} \gtrsim 50$  &  $M_{4j} \gtrsim 70$  GeV.
- direct PHP on average leads to a more massive final state as expected.



•  $M_{3j} \ge 25$  GeV cross section roughly flat in y -  $M_{3j} \ge 50$  GeV cross section increases linearly.

- this behaviour understood from phase-space considerations & the WWA.
- Both MCs with MPIs give a poor description of y but MCs without MPIs describe shape well.
- MPI models causing the problem y cross sections good for tuning/testing MPI models.
- same observations made in the 4-jet  $d\sigma/dy$  distributions.
- T. Namsoo

## The pQCD calculation

- $\mathcal{O}(\alpha \alpha_s^2)$  pQCD is lowest order for 3-jet process.
- $E_T^{\text{jet1}}$  used for renormalisation & factorisation scales.
- theoretical uncertainty evaluated using  $2^{\pm 1}E_T^{\text{jet1}}$  for scales.
- $\alpha_s$  calculated with one loop precision & five active flavours
  - correspondingly  $\Lambda_{\overline{\rm MS}}=181~{\rm MeV}$  was used.
- the CTEQ4L proton & GRV-G LO photon PDFs were used.
- theory convoluted with hadronisation and MPI corrections:

$$C_{\text{had}} = \sigma_{\text{HL}} / \sigma_{\text{PSL}} \quad \& \quad C_{\text{MPI}} = \sigma_{\text{HL}}^{\text{MPI}} / \sigma_{\text{HL}}^{\text{noMPI}}$$

### Comparison with the data

- theory describes high mass but fails for  $M_{3j} \lesssim 50$  GeV.
- discrepancy could stem from:
  - incorrect modelling of the either corrections
  - missing higher-order processes
- the had. corrections are flat unlikely to be the cause.
- the MPI corrections dependent on  $M_{3j}$  underestimated?



# Comparison with the data theory again describes

- theory again describes , high mass data well...
- ... but is poor for  $M_{3j} < 50$  GeV.
- both sets of corrections
  are flat in cos(ψ<sub>3</sub>)
- so unlikely sole cause of problems
- therefore likely data is sensitive to  $\mathcal{O}(\alpha \alpha_s^3)$ + processes.



#### DIS2006, Japan.

0

# Summary

- Three- & four-jet states in PHP measured differentially with 121  $pb^{-1}$  in two  $M_{nj}$  regions.
- LO ME+PS MCs do not describe the data well require an additional component.
- The magnitude of the additional component increases near the kinematic boundaries (low  $M_{nj} \& x_{\gamma}^{obs}$ )
- MPIs can account for this correctly (HERWIG)... BUT...
- ...MPIs tuned to general (albeit less sensitive) collider data fail dramatically (PYTHIA).
- the introduction of MPIs in both HERWIG & PYTHIA disrupts the description of  $d\sigma/dy$ .
  - the MPI models overestimate the effect at high y, which is away from any kinematic boundary.
  - therefore,  $d\sigma/dy$  useful for tuning/testing MPI models (if MPIs are the missing component).
- the  $\mathcal{O}(\alpha \alpha_s^2)$  pQCD calculation describes 3-jet data well for  $M_{3j} \gtrsim 50$  GeV.
- the prediction is poorer for  $M_{3j} \lesssim 50$  GeV due to higher-order processes absent in the calculation.