P. Nason, INFN Milano-Bicocca

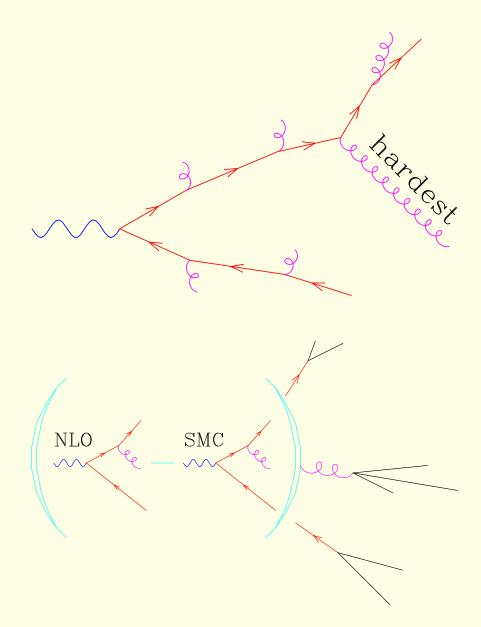
NLO corrections in parton showers with positive weights

version 2

History and Motivations

SMC programs normally accurate at LL level Naturally interfaced to Born processes (i.e. Matrix Element generators) Many available NLO results for collider processes: How do we implement them in a SMC program? Complex overcounting puzzle!!!

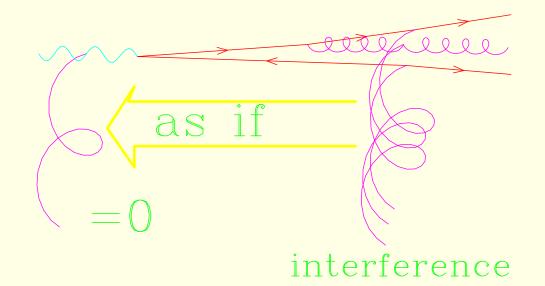
MC@NLO solution (2002, Webber+Frixione)



In angular ordered SMC hardest emission not necessarily first; Needs to be corrected according to exact NLO result.

MC@NLO approach: add hard processes initiated according to difference between the exact NLO and the SMC NLO

Difference \Rightarrow negative weights!!!



Angular ordering accounts for soft gluon interference. Intensity for "photon" jets = 0 instead of $2C_F + C_A$. Intensity for gluon jets: = C_A instead of $2C_F + C_A$.

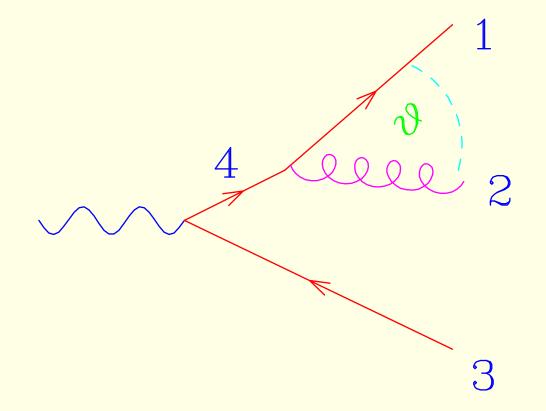
Consistent with a boosted jet pair, in the case of a photon jet.

In angular ordered SMC large angle soft emission is generated first Difficult to correct it explicitly Hardest emission (i.e. highest p_T) happens later. Remedy: generate hardest emission first (PN, 2004)

Recipe

- Generate event with harderst emission
- Pair the nearest partons in the event
- Generate all subsequent emissions with a p_{T} veto equal to the hardest emission p_{T}
- Generate an angular ordered shower associated with the paired parton, stopping at the angle of the paired partons
- Generate all subsequent (vetoed) showers

Example: e^+e^-



Generate hardest emission according to NLO calculation. Nerby partons: 1,2 Truncated shower: from 1,2 pair, from maximum angle down to θ same colour as 4 Shower from 3: from maximum angle to cutoff Showers from 1,2: from θ to cutoff.

All showers are vetoed at the p_{τ} of the 1,2 emission.

NLO correction

Typically implemented with the subtraction method Initial state: Ellis+Ross+Terrano in $e^+e^- \rightarrow X$ (1981), Final state: Mele+Nason+Ridolfi in $h_1h_2 \rightarrow ZZ + X$ (1991)

$$d\sigma = B(p_1 \dots p_m) d\Phi_m + V(p_1 \dots p_m) d\Phi_m$$

+
$$[R(p_1 \dots p_{m+1}) d\Phi_{m+1} - C(p_1 \dots p_{m+1}) d\Phi_{m+1}\mathbb{P}]$$
(1)

where \mathbb{P} defines a soft-collinear insensitive projection of the m + 1 body final state to an m body final state

Assume that a set of variables v describes the Born process $p_1 \dots p_m$ and a set v, r describes the real emission process $p_1 \dots p_{m+1}$ in such a way that

•
$$\mathbb{P}[p_1 \dots p_{m+1}](v,r) = [p_1 \dots p_m](v)$$

- $d\Phi_v$ is the Born phase space
- $d\Phi_v, d\Phi_r$ is the Real phase space

The NLO generation of the hardest emission is performed according to

$$d\sigma = \bar{B}(v,\mu_v)d\Phi_v\left[\Delta(v,0) + \Delta(v,k_T(v,r))\frac{R(v,r)}{B(v)}d\Phi_r\right],$$

where

$$\bar{B}(v) = B(v) + V(v) + \int d\Phi_r \left[R(v,r) - C(v,r)\right]$$
$$\Delta(v,p_{\mathsf{T}}) = \exp\left[-\int \frac{R(v,r)}{B(v)} \theta(k_T(v,r) - p_{\mathsf{T}}) d\Phi_r\right],$$

and $k_T(v,r)$ is the transverse momentum of the emitted parton.

Behaviour

Notice

$$\int \Delta(v, k_T(v, r)) \frac{R(v, r)}{B(v)} d\Phi_r = \int dp_{\mathsf{T}} \frac{d\Delta(v, pt)}{dp_{\mathsf{T}}}$$

So

$$\int d\sigma = \int \bar{B}(v,\mu_v) d\Phi_v$$

For large p_{T}

$$d\sigma \approx \bar{B}(v) \frac{R(v,r)}{B(v)} \approx R(v,r)$$
 up to higher order

For small p_{T}

$$\Delta(v, p_{\mathsf{T}}) \approx \exp\left[-\int \frac{\alpha_{\mathsf{S}}(k_T^2)}{2\pi} P(z)\theta(k_T(\theta, z) - p_{\mathsf{T}})\frac{d\theta^2}{\theta^2} dz\right],$$

same as in Sudakov for standard SMC! (P(z) is the Altarelli-Parisi splitting kernel)

Strategy

SMC's to do final showering already exist Most of them implement a p_T veto Most of them comply with a standard interface to hard process (so called Les Houches interface, LHI from now on). So!

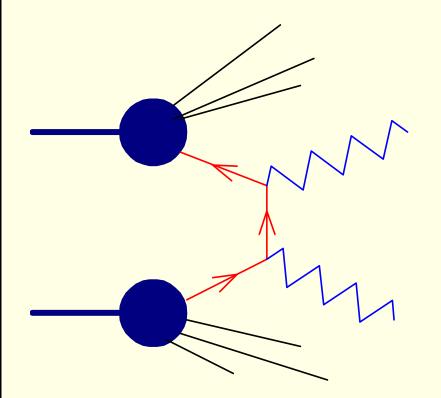
- Construct a generator for the hardest event INDEPENDENT from specific SMC's implementations Output on LHI
- Construct a generator capable to add truncated showers to events from the LHI Output again on LHI
- Use standard SMC to perform the $p_{\rm T}$ vetoed final shower from the event on LHI.

Three independent items! Several solutions possible by different research groups

(Ongoing work with S. Frixione and G. Ridolfi).

First example: ZZ production in hadron collisions

(with G. Ridolfi)



NLO process known (Ridolfi, P.N.) Intermediate complexity Hadrons in initial state Similar to WZ,WW and $Q\bar{Q}$ (Mangano, Ridolfi, Frixione, P.N.).

Treatment of initial state radiation similar in ZZ, WZ, WW and $Q\bar{Q}$ case; Same used in Frixione-Kunszt-Signer general subtraction method.

v and r variables

v variables: choose Mzz, Yqq and θ as, where

- M_{ZZ} : invariant mass of the ZZ pair
- Y_{ZZ} : rapidity of ZZ pair
- θ: go in the (longitudinally) boosted frame where Y_{ZZ} = 0.
 go to the ZZ rest frame with a transverse boost
 In this frame θ is the angle of a Z to the beam direction.
- r variables:
 - $x = M_{ZZ}/s$, where s is the invariant mass of the incoming parton system

Thus 1 - x is the fraction of energy lost by radiation of a soft parton

- y: cosine of the angle of the radiated parton to the beam direction in the partonic CM frame.
- ϕ : radiation azimuth.

Few tricks to do it

$$\overline{B}(v) = B(v) + V(v) + \int d\Phi_r \left[R(v,r) - C(v,r) \right]$$

Seems to need one r integrations to get weight of each v point.

In fact, write

$$\tilde{B}(v,r) = N[B(v) + V(v)] + R(v,r) - C(v,r), \qquad N = \frac{1}{\int d\Phi_r}.$$

so that

$$\bar{B}(v) = \int \tilde{B}(v,r) d\Phi_r$$

Use standard procedures (SPRING-BASES, Kawabata) to generate unweighted events for $\tilde{B}(v,r)d\Phi_r d\Phi_v$. discard r (same as integrating over it!).

$$\Delta(v, p_{\mathsf{T}}) = \exp\left[-\int \frac{R(v, r)}{B(v)} \theta(k_T(v, r) - p_{\mathsf{T}}) d\Phi_r\right],$$

Look for an upper bounding function;

$$\frac{R(v,r)}{B(v)} \le U(v) = N \frac{\alpha_S(k_T)}{(1-x)(1-y^2)}$$

Generate x, y according to

$$\exp\left[-\int N\frac{\alpha_S(k_T)}{(1-x)^2(1-y^2)}\theta(k_T(v,r)-p_{\mathsf{T}})d\Phi_r\right]$$

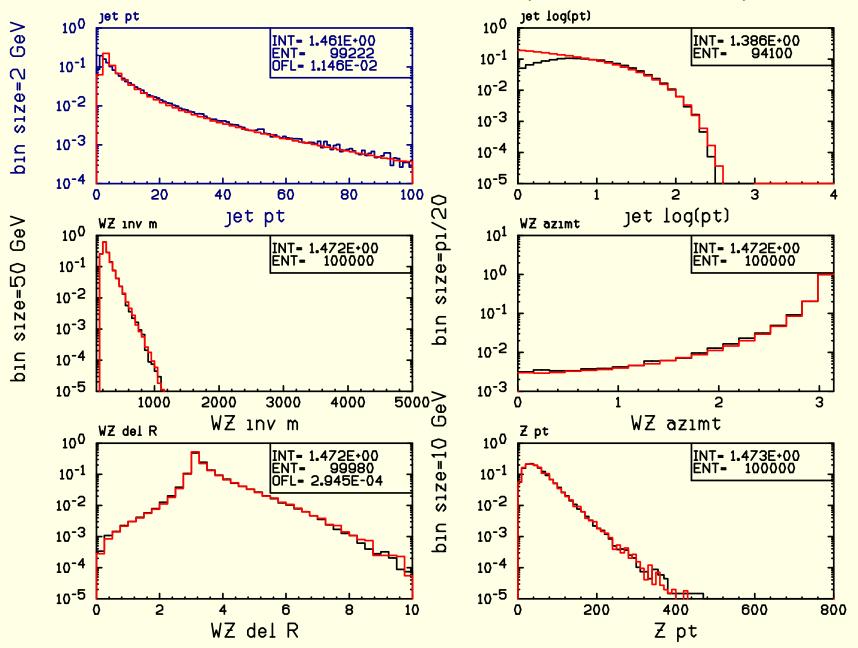
(2)

accept the event with a probability

$$rac{R(v,r)}{B(v)U(v)}$$
 .

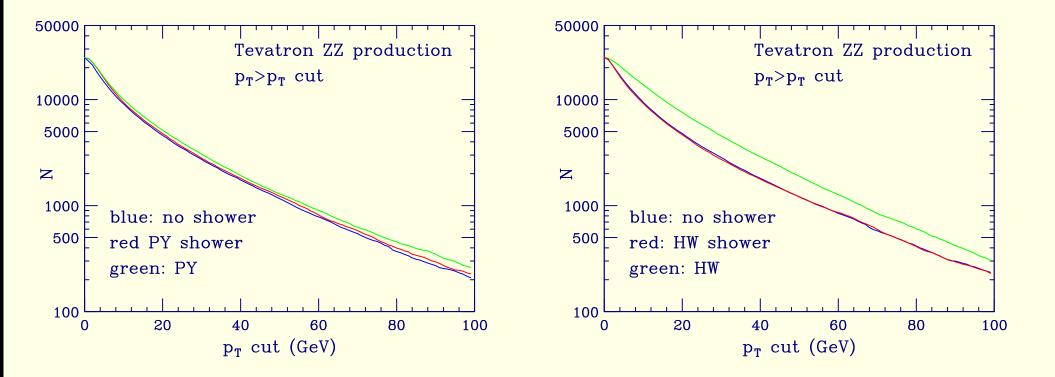
If the event is rejected generate a new one for smaller p_{T} , and so on (This procedure reconstructs the exact emission probability). In the ZZ case, an event is generated with about six calls ro R(v,r).

Compare to fixed order NLO (red histograms)



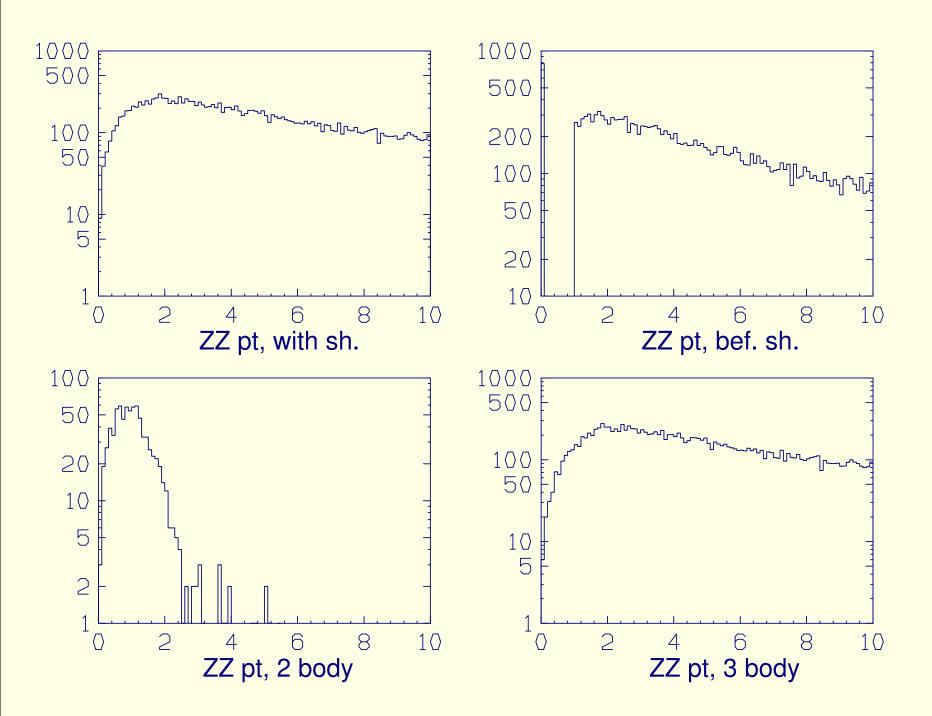
Compare to fixed order NLO (red histograms)

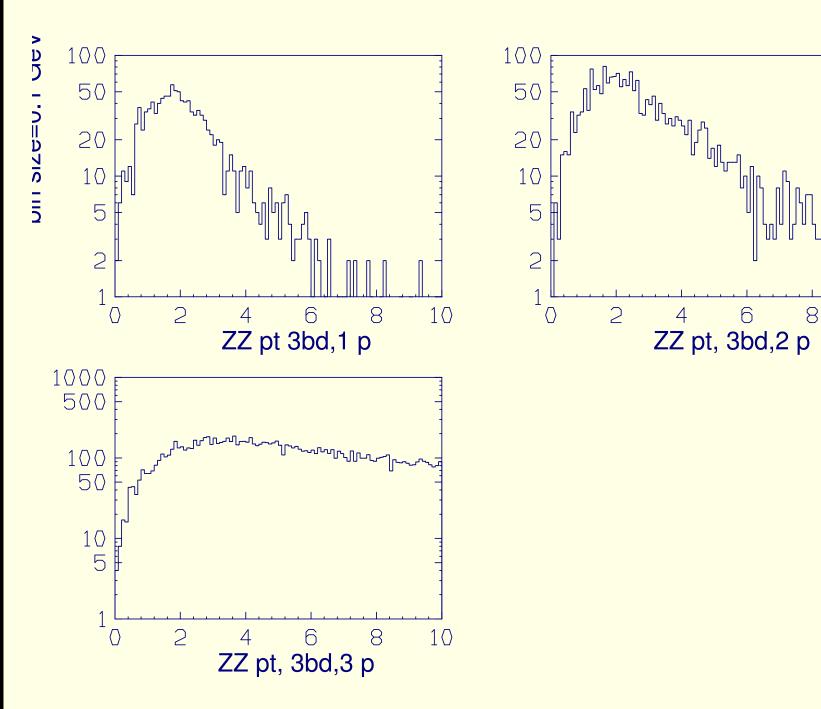




Focus upon p_{T} spectrum now (interface tuning). Default MC parameters

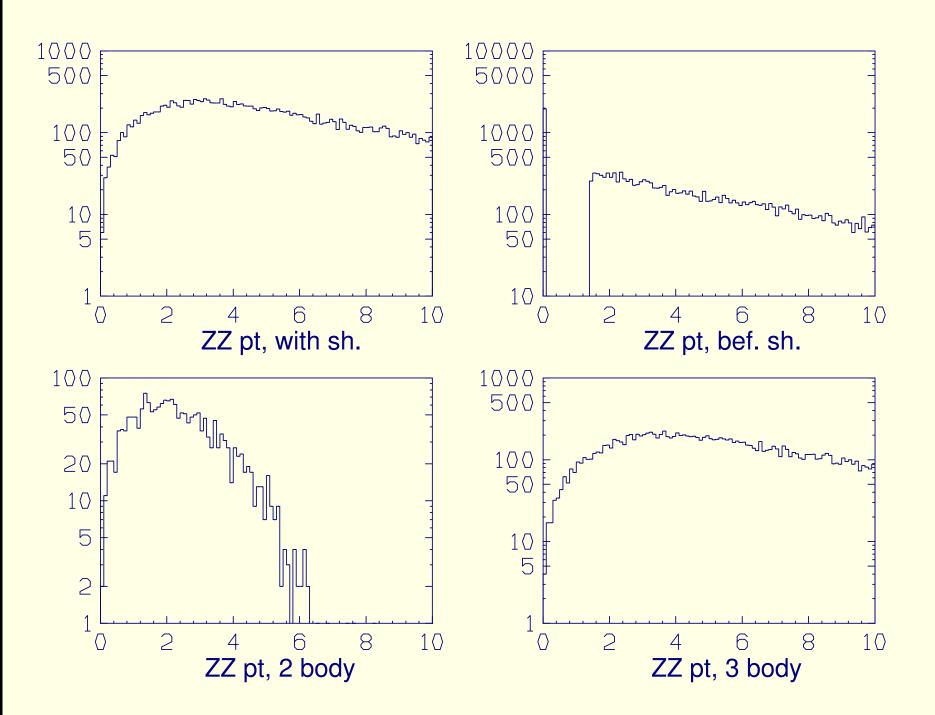
(NOT TO BE USED TO DRAW CONCLUSIONS ABOUT SMC'S!)





HERWIG

10



Conclusions

- Proof of concept: MC+NLO with positive weight possible and easy
- Final state radiation easy; Initial state radiation presents no problems
- Interface to different SMC's under studies
- Formulation of general method for NLO processes under work
- Truncated shower: interesting topic to develop