# Forward Jet Production in Deep Inelastic Scattering at HERA

H1 Collaboration, A.Aktas et al., DESY-05-135, Accepted by Eur. Phys. J. C, hep-ex/0508055

# **Outline:**

- Introduction and Motivation
- Forward Jet Selection
- Theory and QCD Models
- Results: > Differential Forward Jet Cross Sections
  - Dijet + Forward Jet Cross Section
- Summary & Conclusions

Christiane Risler, DESY on behalf of the H1 collaboration

April 22<sup>nd</sup> 2006, DIS 2006, Tsukuba, Japan

**Christiane Risler** 

Forward Jets in DIS at HERA, DIS 2006



1

### Introduction



- Inclusive measurement F<sub>2</sub> well described by DGLAP
- Dijet cross section, jet rates hard subsytem

#### • Jets in forward region

gluon emissions close to proton direction well away from photon end of ladder study parton dynamics most sensitive to different evolution schemes in fwd region: DGLAP ordered in  $k_{\downarrow}$  – soft emissions only

BFKL non-ordered in  $k_{t}$  – arbitrary  $k_{t}$ 

### Introduction



# H1 detector at HERA



Christiane Risler

### **Event and Jet Selection**

### Forward jet selection

inclusive kt-algorithm in Breit frame

| $1.74 < \eta_{iet} < 2.79$          | forward jet  |
|-------------------------------------|--------------|
| p <sub>T,iet</sub> > 3.5 GeV        |              |
| $x_{jet} = E_{jet} / E_{p} > 0.035$ | suppress QPM |

```
if N_{jet} >1: choose jet with highest \eta
```

### **Dijet + forward jet selection**

in addition 2 more jets = 2 highest pt jets

 $\begin{array}{ll} p_{_{T}} > 6 \; GeV & \mbox{for all 3 jets} \\ \eta_{_{e}} < \eta_{_{jet1}} < \eta_{_{jet2}} < \eta_{_{jetfwd}} & (-3.1 < \eta < 2.79) \\ \mbox{no cut on } p_{_{T,jet}}^{\quad 2}/Q^2 & \\ \mbox{other cuts on fwd jet as above} \end{array}$ 

- single differential cross sections  $d\sigma/dx_{bj}$   $0.5 < r=p_{T,jet}^{2}/Q^{2} < 5$ suppress DGLAP
- triple differential cross sections  $d^3\sigma/dx_{bj}^2dp_t^2$

 study η separation of three jets

### **QCD** Predictions

**Monte Carlo Event Generator (LO calc + PS + hadronisation) •RAPGAP:** LO ME + PS, DGLAP evolution, parton shower k<sub>t</sub> ordered

direct  $\gamma$  interactions

•RAPGAP RES: includes resolved  $\gamma$  interactions, additional DGLAP ladder from photon to hardsubproces

•CDM (ARIADNE): parton shower in CDM – BFKL like

•CASCADE: LO ME, CCFM evolution (initial state PS) unintegrated gluon densities

all modesl use Lund String Model Hadronisation

### **QCD** Predictions

#### **Monte Carlo Event Generator (LO calc + PS + hadronisation) •RAPGAP:** LO ME + PS, DGLAP evolution, parton shower k<sub>1</sub> ordered

direct γ interactionsproton PDF: CTEQ6L•RAPGAP RES: includes resolved γ interactions,<br/>additional DGLAP ladder from photon to hardsubprocesphoton PDF: SaS1D

•CDM (ARIADNE): parton shower in CDM – BFKL like PDF: CTEQ6M

•CASCADE: LO ME, CCFM evolution (initial state PS) unintegrated gluon densities

all modesl use Lund String Model Hadronisation

### **NLO parton level Calulations**

#### •DISENT:

**Christiane Risler** 

dijet production at LO( $\alpha_s$ ) and NLO( $\alpha_s^2$ ) forward jet cross section PDF: CTEQ6M •NLOJET++:

three jet production at NLO( $\alpha_s^3$ ) dijet+forward jet cross section

hadr. corrections applied to caluclations:  $(1+\delta_{HAD})$ 

### Comparison with NLO predictions



LO contributions suppressed in selected phase space

**Christiane Risler** 

DISENT LO( $\alpha_{s}$ ) and NLO( $\alpha_{s}^{2}$ )  $\mu_{r}^{2}=p_{T}^{2}$   $\mu_{f}^{2}=<p_{T,fwdjet}^{2}>=45 \text{ GeV}^{2}$   $0.25 \mu_{r,f}^{2} < \mu_{r,f}^{2} < 4 \mu_{r,f}^{2}$  $(1+\delta_{HAD})$ 

at low x<sub>bj</sub>: • LO << NLO

NLO below data

at high x<sub>bj</sub>:
NLO better agreement

# Forward jets cross section: x<sub>bi</sub>



# Forward jets cross section: x<sub>bi</sub>















# High $p_{\tau}$ dijets + forward jet



2 hardest jets ( $p_T > 6GeV$ ): jet1, jet2 + forward jet ( $p_T > 6GeV$ ) selected (no  $p_{T jet}^2 / Q^2$  cut)

$$\begin{split} \eta_{e} < \eta_{jet1} < \eta_{jet2} < \eta_{fwdjet} \\ \Delta \eta_{1} = \eta_{jet1-} \eta_{jet2} \\ \Delta \eta_{2} = \eta_{jet2-} \eta_{fwdjet} \end{split}$$

further handle to control parton dynamics

rapidity separation  $\Delta \eta_1 < 1$ : jet1 and jet2 close in η, small  $x_{g}$ many emissions in x  $\Delta \eta_1 > 1$ : large η separation between 2 hardest jets shorter parton ladder  $\Delta \eta_1$  small and  $\Delta \eta_2$  small: all jets "fwd", 2 or 3 jets from gluons? non-ordering in kt!

## High $p_{\tau}$ dijets + forward jet



**Christiane Risler** 

# High $p_{\tau}$ dijets + forward jet



High  $p_{T}$  dijets + forward jet



**Christiane Risler** 

- •Jets in forward direction in DIS with constraints in order to suppress DGLAP evolution and enhance phase space for non-ordered parton evolutions
- Single and triple differential forward jet cross section as fct of  $x_{bj}$  and  $Q_2$ ,  $p_t^2$  best desription of data by RAPGAP-DIR+RES and CDM while CASCADE, RG-DIR fail NLO( $\alpha_s^2$ ) dijet only good description at large  $x_{bi}$  or large  $Q_2$ , large  $p_t^2$
- η separation in dijet+forward jet sample further handle on parton dynamics, best description: CDM and RG-DIR+RES
- higher order parton emissions which break k<sub>t</sub> ordering needed, while simple DGLAP evolution restricts phase space too much
- dijet + fwd jet sample can differentiate between CDM and RG-DIR+RES: CDM gives better description additional breaking of k<sub>t</sub> ordering compared to resolved γ model needed

### **Additional material**

### **Control Plots**



Forward Jets in DIS at HERA, DIS 2006

5

