Scaled Charged Particle Momentum Distributions at High Q² at HERA (HI)

Daniel Traynor

Motivation

- Parton splitting in pQCD causes scaling violations in structure functions. Also seen in fragmentation functions. Test pQCD
- Quark fragmentation universality and test of factorisation comparison with e+e- results. Test QCD
- Test of fragmentation (CDM/ PS) and hadronisation (String/Cluster) models and there tuning. Test npQCD

Breit Frame

p<<(

Observable D(x_P)

D(xp) = event normalised, charged particle, scaled momentum spectrum

Phase Space

Compare to e⁺e⁻

How does I hemisphere of $e^+e^- \rightarrow q\overline{q}$ compare to current region of Brit frame?

> e+e- experiments: TASSO E*= 14, 22, 35, 44 GeV MARKII E*= 29 GeV AMY E*= 54GeV DELPHI E*= 91 GeV

Physics differences : quark source proton PDF not vacuum ! + ICQCD and BGF !

Moving from low to high Q spectra becomes softer. More particles with a lower share of the total momentum. Scaling violations.

- e⁺e⁻ data show same behaviour (slightly) softer?).
- Good demonstration of quark fragmentation universality.

Possible discrepancy between ep and e⁺e⁻ at low Q (BGF / ICQCD?)

Hadronisation Models

To take into account physics differences use Monte Carlo fragmentation model steering has been tuned to e+e-.

HERWIG (v6.5) LO ME + parton shower + cluster hadronisation

RAPGAP (v3.1) LO ME + parton shower + string hadronisation

CTEQ5L PDF used throughout

Hadronisation Models

distance

time

Cluster Hadronisation

String Hadronisation

Soth models describe low x_p data (phase space limits hadron production).

- RAPGAP give a good description of the data.
- At high x_p HERWIG spectrum is too hard! HERWIG also looks very flat (where is the QCD?).

Parton Cascade Models

RAPGAP (v3.1) LO ME + parton shower + string hadronisation

LEPTO (6.5) LO ME + parton shower + soft colour interactions + string

DJANGO (H1.4) LO ME + colour dipole model + string hadronisation

Monte Carlo models tuned to e+e- data

CTEQ5L PDF used throughout

Parton Cascade Models

Parton Showers

Soft Colour Interactions

Colour Dipole Model

Both RAPGAP (PS) and DJANGO (CDM) give similarly good description of the data.

LEPTO (SCI) too soft.

Data tends to turn over faster than DJANGO / RAPGAP. More like LEPTO.

Scaling violations

Summary

- Presented new results on the D(xp) distribution in current region of Breit frame in DIS ep interactions.
- IS and e⁺e⁻ results in agreement at high Q (this analysis).
- String hadronisation better than cluster
- Monte Carlo tuned from LEP data can successfully describes ep data over large region of Q.
- Comparison with full NLO predictions (CYCLOPS program).

Back up

Monte Carlo tunings

- CTEQ5L PDF throughout.
- LEPTO +SCI : John Rathsman retuning of LEP data (<u>http://www3.tsl.uu.se/~rathsman/</u> <u>gal/</u>)
- DJANGO + RAPGAP: ALEPH tuning for higher resonance, no BEC, Sophi below W = 5GeV
- HERWIG NC DIS, ME+PS, no soft underlying event

Infra red safe region (Q²>100), x_p >0.1

FF parameterised from xp>0.1

Highest Q2 bin (8,000 - 20,000) low in statistics and problematic phase space

CTEQ6M, $\Lambda(5)_{QCD} = 226 \text{ MeV}$ as used for ME + FF

Scale/pdf errors not shown but expected to be small

