Parton Dynamics at low x_{Bj} using DIS 3-jet events

C. Werner, O. Behnke, F. Eisele, University of Heidelberg on behalf of the H1 collaboration

Motivation

- QCD dynamics at small $x_{\rm Bj}$: $10^{-4} < x_{\rm Bj} < 10^{-2}$ DGLAP still valid at HERA? (neglects terms in $\alpha_{\rm s} \log 1/x_{\rm Bj}$)
- important topic at HERA since 1993
- so far: too many forward jets in data compared to DGLAP predictions
- <u>now</u>: search for gluon radiation unordered in p_{\perp} \leftrightarrow connected to $\log 1/x_{\rm Bi}$ terms
- events with ≥ 3 Jets \Rightarrow at least one jet from radiated gluons

H1 Detector & DIS phase space

jet selection

- objects: calorimeter cluster and tracks $(\gamma^*-p \text{ CMS})$, incl. k_{\perp} Algorithm
- ≥ 3 jets with $p_{\perp}^{\star} > 4$ GeV
- leading p_{\perp}^{\star} jets: $p_{\perp 1}^{\star} + p_{\perp 2}^{\star} > 9 \text{ GeV}$
- 1 jet in central tracking device

(LO) Monte Carlo (MC) Generators

to determine correction factors (reweighted to improve agreement with data)

- Color Dipole Model (CDM) (djangoh13) p_{\perp} unordered emission of gluons
- DGLAP MC (RG d+r) (RAPGAP), including resolved γ processes, gluon emissions ordered in p_{\perp}

(Comparison at hadron level)

fixed order QCD calculation

• NLOjet++ 3-Jet LO $(\mathcal{O}(\alpha_s^2))$ and NLO $(\mathcal{O}(\alpha_s^3))$ cross sections

(Comparison at parton level)

3-Jet cross sections (parton level) (I)

3-jet cross sections (parton level) (II)

 $\frac{\text{Observables describing}}{\frac{\text{the topology of}}{3\text{-jet events}}}$

- boost into the 3-jet CMS
- 1. relative energies:

$$X_i' = \frac{E_i}{E_1 + E_2 + E_3}$$

2. relative angles:

Christoph Werner

DIS2006 (HFS-6)

3-jet cross section including forward jets (parton level)

Shape Comparison with LO MC-Generators (hadron level) (I)

compare shapes: cross section by CDM (+6%) resp. RG d+r (+57%) normalised to data

Shape Comparison with LO MC-Generators (had. level) (II)

- again: compare shapes
- CDM (unordered gluon radiation) describes data reasonnably
- RG d+r (ordered gluon radiation) fails to describe data
- CDM describes most distributions better than NLOjet++, has some problems with angular topology, especially visible in 2 forward jet sample

here: NLOjet++ better than CDM

Summary

- only MC Generator with unordered radiation of gluons describes data satisfactory
- $\mathcal{O}(\alpha_{\rm s}^3)$ calculation: huge improvement w. r. t. $\mathcal{O}(\alpha_{\rm s}^2)$ deficit (total 18%) concentrated at low x, high η and $N_{\rm Jet}$

(**rem.:** in $\mathcal{O}(\alpha_{\rm s}^3)$ first terms $\propto \log 1/x_{\rm Bj}$ enter)

highest deviations in topology with 2 forward jets

 \rightarrow presumably due to higher fraction of gluon jets

 \bullet strong hints for radiation of gluons unordered in p_\perp

