Charmed-hadron production and charm fragmentation at ZEUS

William Dunne

University of Glasgow on behalf of the ZEUS collaboration

April 17, 2006

イロン イヨン イヨン イヨン

Outline

Introduction Charm fragmentation Variables Summary & Outlook

Introduction

Previous measurements of charm production Aims and Motivations of new measurements

Charm fragmentation

Definition Hadron Reconstruction Fractions Overview

Variables

Disentangling D^* 's $R_{u/d}$ Vector Mesons P_V^d S suppression

Summary & Outlook

Previous measurements of charm production Aims and Motivations of new measurements

Aims and Motivations

- ► Follow Eur. Phys. J. C. 44, 351-366 (2005)
- ► Reconstruct the charm mesons D⁰, D[±], D^{*±}, D[±]_s and the charm baryon Λ[±]_c. Hereafter D⁺, Λ⁺ is taken to mean D[±], Λ[±]
- Use measurements of the cross sections of those hadrons to obtain
 - Fragmentation fractions
 - \rightarrow Are fragmentation fractions independent of experiment?
 - Strange suppression
 - \rightarrow How frequently are s quarks picked up by c quarks in D mesons?
 - ► Ratio of u/d production →Are u and d quark picked up equally by c quarks in D mesons?
- ▶ Integrated luminosity of 79 pb⁻¹ in photoproduction regime

・ロト ・御 ト ・ ヨ ト ・ ヨ ト - 三

Definition Hadron Reconstruction Fractions Overview

Charm fragmentation fractions

The fraction of c quarks hadronising as a particular charm hadron is given by

$$f(c
ightarrow D, \Lambda_c) = rac{\sigma_{D,\Lambda c}}{ ext{Total } \sigma_{gs}}$$

- $\sigma_{D,\Lambda c}$ production cross section (σ) for the hadron
- Total σ_{gs} sum of production σ for all c ground states (ie not D^{*+}) that decay weakly
 - Dominated by: D^+ , D^0 , D_s^+ and Λ_c^+
 - Charm-strange baryons Ξ⁺_c, Ξ⁰_c and Ω⁰_c included by estimating they contribute 14% of Λ⁺_c

The σ_{D^+} and σ_{D^0} contributions to Total σ_{gs} are the sums of their direct cross section and D^* decay contribution

By definition $\Sigma_{gs} f(c \rightarrow D, \Lambda_c) = 1$

・ロン ・ 四 と ・ ヨ と ・ ヨ と … ヨ …

Definition Hadron Reconstruction Fractions Overview

Reconstruction of charmed hadrons

- D^{*+}, D⁺, D⁰, D⁺_s, and Λ⁺_c are all measured in PHP in the same kinematic range p_T(D, Λ_c) > 3.8 GeV OR |η(D, Λ_c)| < 1.6
- Background reduction gained by cutting on p_T and decay angles of the decay products
- Problem: Some D^{*+} decay into D⁰'s which fall outside of the kinematic range
 - We must keep track of those D⁰'s which arise from D^{*+} decay to avoid double counting in σ(D^{*+})
- Solution: We divide up the D⁰ sample into those that originate from a D^{*+} decay and those that do not

イロト イボト イヨト イヨト 三座

Definition Hadron Reconstruction Fractions Overview

Separation of D^0 sample

- ▶ For D^0 candidates a search is made for a soft pion in a $D^{*+} \rightarrow D^0 \pi^+$ decay and tagged if this is the case
- ► $D^{*+} \rightarrow D^0 + \pi_s$ events are considered a sum of two subsamples
 - ▶ 'Tagged' events with $p_T(D^0) > 3.8$ GeV and $|\eta(D^0)| < 1.6$
 - ▶ 'Additional' events with $p_T(D^0) < 3.8$ GeV and $|\eta(D^0)| > 1.6$
- The 1st sample is represented by labeling these D⁰ events with a special 'tag'.
- The 2nd sample is a set of separately measured 'additional' D* events
- $\bullet \ \sigma^{\mathrm{kin}}(D^{*+}) = \sigma^{\mathrm{add}}(D^{*+}) + \sigma^{\mathrm{tag}}(D^0) / B_{D^* \to D^0 \pi^+}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

Definition Hadron Reconstruction Fractions Overview

Subtraction of Reflections

- We must ensure in the mass region about the signal there is no contribution from any other decay modes
 - This would provide a false signal and must be corrected for
- List decays with same number of daughter particles in this mass region
- Obtain reflections by assigning masses to tracks which correspond to these daughter particles
- These reflection shapes taken from MC and normalised by signals in nominal decay modes
- Reflections are much wider than signal and provide complex background shapes
- Signal fits are more stable after reflection subtraction

イロン イヨン イヨン ・ ヨン

Definition Hadron Reconstruction Fractions Overview

The Modified Gaussian

Mass distributions were fitted with a 'modified' Gaussian function + background

$$Gauss^{mod} \propto exp\left[-0.5x^{1+1/(1+0.5x)}
ight]$$

$$\blacktriangleright x = ([M - M_D]/\sigma)$$

- Background function is:
 - linear for Λ_c^+ and D^+
 - exponential for D_s^+ and D^0
 - polynomial for D^{*+}

► Modified Gaussian has 3 free parameters like the regular Gaussian → far superior fit to data and MC signals → especially useful for high statistics MC signals

・ロン ・回と ・ヨン・・ヨン

Definition Hadron Reconstruction Fractions Overview

- *M*(*Kp*π) spectrum after all cuts
- dE/dx cuts applied to suppress background
- Reflections from D⁺ D⁺_s to 3 charged particles subtracted using the simulated reflection shapes.

Definition Hadron Reconstruction Fractions Overview

Reconstruction of additional D^{*+} mesons

- ► △M spectrum
- N(D*+) counted by subtracting wrong charge background in yellow region
- *D**'s counted in range: 0.143 < ∆*M* < 0.148 GeV

(D) (A) (A) (A) (A)

Definition Hadron Reconstruction Fractions Overview

Definition Hadron Reconstruction Fractions Overview

Reconstruction of D^0 mesons

 D⁰'s are tagged if they originate from a D^{*+} decay

- Later necessary to remove the D*+ contribution to D⁰
- Tagged D⁰ signal is more pronounced
- Fit performed simultaneously

A (1) > A (1)

Definition Hadron Reconstruction Fractions Overview

Reconstruction of D^+ mesons ZEUS 20000 0 17500 12500 12500 ZEUS 1999-2000 Reflections from Reflections subtracted $D_c^+, \Lambda_c \rightarrow 3$ charged Gauss^{mod} + Backgr. particles subtracted 10000 130 < W < 300 GeV, Q² < 1 GeV² All signals are resolved $p_{T}(D^{\pm}) > 3.8 \text{ GeV}, |\eta(D^{\pm})| < 1.6$ 7500 cleanly at ZEUS $N(D^{\pm}) = 8950 \pm 600$ 5000 2500 0 1.8 1.9 2 M(Kππ) (GeV) (日) (部) (目) (日)

William Dunne

Charmed-hadron production and charm fragmentation at ZEUS

Definition Hadron Reconstruction Fractions Overview

Fragmentation fractions for Λ_c^+

• Decay channel: $\Lambda_c^+ \rightarrow K^- p \pi^+$

Larger than but consistent with world average

イロト イポト イヨト イヨト

Definition Hadron Reconstruction Fractions Overview

Fragmentation fractions for D^*

- Decay channel: $D^{*+} \rightarrow D^0 \pi_s^+$
- Smaller than but consistent with previous measurements
- About half of the difference due to low $f(c \rightarrow \Lambda_c^+)$

Definition Hadron Reconstruction Fractions Overview

Fragmentation fractions for D_s^+

- Decay channel: $D_s^+ \to \phi^0 (\to K^+ K^-) \pi^+$
- Excellent agreement

イロト イポト イヨト イヨト

Definition Hadron Reconstruction Fractions Overview

Fragmentation fractions for D^0

- Decay channel: $D^0 \rightarrow K^- \pi^+$
- Good agreement

イロト イポト イヨト イヨト

Definition Hadron Reconstruction Fractions Overview

Fragmentation fractions for D^+

- Decay channel: $D^+ \rightarrow K^- \pi^+ \pi^+$
- Excellent agreement

イロン イヨン イヨン ・ ヨン

Definition Hadron Reconstruction Fractions Overview

Overview: Charm fragmentation fractions

Consistent with universality assumption of charm fragmentation

3

< 臣 > < 臣 > .

 Outline
 Disentangling $D^{*'s}$

 Introduction
 $R_{u/d}$

 Charm fragmentation
 Vector Mesons

 Variables
 P_V^d

 Summary & Outlook
 S suppression

Disentangling D^* 's

"In the measurement of $f(c \rightarrow X)$ it is sometimes necessary to disentangle which of the decay modes have a contribution from a D^* decay and which do not. Often it is necessary to subtract this contribution before making a measurement."

- ▶ Recall D^0 's are tagged if they are a result of a D^{*+} decay
- ► Any D^{*+} which give rise to a D⁰ outwith the kinematic cuts are called *additional* D^{*+}

The measured quantities in this analysis are

- ► $\sigma^{\text{untag}}(D^0)$: The production cross section for D^0 mesons not originating from the $D^{*+} \rightarrow D^0 \pi_s^+$ decay
- ► $\sigma^{\text{tag}}(D^0)$: The production cross section for D^0 mesons originating from the $D^{*+} \rightarrow D^0 \pi_s^+$ decay
- σ^{add}(D^{*+}): The production cross section for additional D^{*+} mesons (p_T(D⁰) < 3.8 GeV OR η(D⁰) > 1.6)
- give list of equations? like sigma kin relationships etc

 Outline
 Disentangling D^{*} 's

 Introduction
 $R_{u/d}$

 Charm fragmentation
 Vector Mesons

 Variables
 P_V^d

 Summary & Outlook
 S suppression

$R_{u/d}$: Relative number of u and d quarks

The ratio of neutral to charged D meson production rates

$$\mathsf{R}_{u/d} = \frac{\sigma^{\mathrm{dir}}(D^0) + \sigma(D^{*0})}{\sigma^{\mathrm{dir}}(D^+) + \sigma(D^{*+})}$$

- We are now dealing with both excited and ground state mesons. Care must be taken to treat D* contribution correctly
 σ^{dir}(D⁰) and σ^{dir}(D⁺) are those parts of σ(D⁰) and σ(D⁺) not originating from D* decays
- Problem: $\sigma^{dir}(D^0)$ and $\sigma^{dir}(D^+)$ are not measured

.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 $\begin{array}{c|c} & \text{Outline} & \text{Disentangling } D^*\text{'s}\\ & \text{Introduction} & R_{u/d}\\ \text{Charm fragmentation} & \text{Vector Mesons}\\ & \text{Variables} & P_V^d\\ \text{Summary & Outlook} & \text{S suppression} \end{array}$

$R_{u/d}$: Relative number of u and d quarks

 To express this formula in terms of quantities measured at ZEUS we make use of a number of relationships

• Since
$$D^{*0} \rightarrow D^0 + X$$
 always

•
$$\sigma^{\mathrm{dir}}(D^0) + \sigma(D^{*0}) = \sigma^{\mathrm{untag}}(D^0)$$
 (i.e. not from D^{*+})

►
$$\sigma^{\operatorname{dir}}(D^+) = \sigma(D^+) - \text{the contribution from } D^{*+}$$

► $\sigma^{\operatorname{dir}}(D^+) = \sigma(D^+) - \sigma(D^{*+})(1 - B_{D^{*+} \to D^0_{\pi^+}})$

By substitution we arrive at the usable expression

$$R_{u/d} = rac{\sigma^{ ext{untag}}(D^0)}{\sigma^{ ext{tag}}(D^0) + \sigma(D^+)}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

OutlineDisentangling D^* 'sIntroduction R_u/d Charm fragmentationVector MesonsVariables P_V^d Summary & OutlookS suppression

$R_{u/d}$: Relative number of u and d quarks

$$R_{u/d} = \frac{\sigma^{\text{dir}}(D^0) + \sigma(D^{*0})}{\sigma^{\text{dir}}(D^+) + \sigma(D^{*+})} = \frac{c\bar{u}}{c\bar{d}}$$

► u and d quarks are produced equally in charm fragmentation → Strong Isospin Invariance Holds

William Dunne

Charmed-hadron production and charm fragmentation at ZEUS

 $\begin{array}{c|c} & \text{Outline} & \text{Disentangling } D^{*}\\ & \text{Introduction} & R_{u/d} \\ \text{Charm fragmentation} & \text{Vector Mesons} \\ & \text{Variables} & P_{V}^{d}\\ \text{Summary & Outlook} & \text{S suppression} \end{array}$

Fraction of Vector Meson Production

3 VM spin states 1 PS spin state

$$\begin{split} |\uparrow\uparrow> & . \\ |\uparrow\downarrow>+|\downarrow\uparrow> & |\uparrow\downarrow>-|\downarrow\uparrow> \\ |\downarrow\downarrow> & . \end{split}$$

- The number of permitted spin states:
 - Vector mesons (D^{*+}) have a total of 3
 - Pseudoscalar mesons (D^0, D^+) have only 1.
- By naive spin counting we expect D mesons to be produced in a VM state 3× more often than in a PS state

•
$$\frac{V}{V+PS} = 0.75$$

• Can be verified by measurements of D^{*+} and D^+

ヘロト 不得 トイヨト イヨト

 Outline
 Disentangling D^* 's

 Introduction
 $R_{u/d}$

 Charm fragmentation
 Vector Mesons

 Variables
 P_V^d

 Summary & Outlook
 S suppression

Fraction of Vector Meson Production

.

The fraction of D mesons produced in a vector state

$$P_V^d = rac{V}{V+PS} = rac{\sigma^{\mathrm{kin}}(D^{*+})}{\sigma^{\mathrm{kin}}(D^{*+}) + \sigma^{\mathrm{dir}}(D^+)}$$

 σ^{kin}(D^{*+}) = the production σ(D^{*+}) in an equivalent kinematic range to σ^{dir}(D⁺)

 $p_T(D^*) > 3.8$ GeV, $|\eta(D^*)| < 1.6$

• $\sigma^{\mathrm{dir}}(D^+) =$ the part of $\sigma(D^+)$ not from D^{*+} decays

$$P_V^d = \frac{\sigma^{\text{tag}}(D^0)/B_{D^{*+} \to D^0 \pi^+} + \sigma^{\text{add}}(D^{*+})}{\sigma(D^+) + \sigma^{\text{tag}}(D^0) + \sigma^{\text{add}}(D^{*+})}$$

イロン イボン イヨン イヨン 一座

Disentangling D*'s Outline Introduction Vector Mesons Charm fragmentation Variables Summary & Outlook S suppression

P_{V}^{d} : Fraction of VM in f($c \rightarrow D$) fragmentation

- ► ZEUS: $P_V^d = 0.566 \pm 0.025(\text{stat})^{+0.007}_{-0.022}(\text{syst.})^{+0.022}_{-0.023}(\text{br})$
- Smaller than but consistent with previous measurements
- Considerably smaller than simple spin counting prediction.
- Thermodynamical & String Fragm. models: $P_V^d \approx 0.666$
 - closer to but still above the measured value
- ▶ $P_V^D \neq 0.75$. Simple spin counting does NOT work with charm

Strangeness suppression factor

"Strangeness suppression is a parameter which determines the ratio of probabilities to create a s to u, d quark in the fragmentation process."

$$\gamma_s = rac{2\sigma(D_s^+)}{\sigma^{
m eq}(D^+) + \sigma^{
m eq}(D^0)}$$

▶ Using relationships for the equivalent cross sections $\sigma^{eq}(D)$

$$\begin{split} \sigma^{\rm eq}(D^0) &= \sigma^{\rm untag}(D^0) + \sigma^{\rm tag}(D^0) + \sigma^{\rm add}(D^{*+})(R_{u/d} + B_{D^{*+} \to D^0 \pi^+}) \\ \sigma^{\rm eq}(D^+) &= \sigma(D^+) + \sigma^{\rm add}(D^{*+})(1 - B_{D^{*+} \to D^0 \pi^+}) \end{split}$$

$$\gamma_s = \frac{2\sigma(D_s^+)}{\sigma(D^+) + \sigma^{\mathrm{untag}}(D^0) + \sigma^{\mathrm{tag}}(D^0) + \sigma^{\mathrm{add}}(D^{*+})(1 + R_{u/d})}$$

 Outline
 Disentan

 Introduction
 $R_{u/d}$

 Charm fragmentation
 Vector N

 Variables
 P_V^d

 Summary & Outlook
 Suppre

Disentangling D^{*} $R_{u/d}$ Vector Mesons P_V^d S suppression

Strangeness suppression factor

• The strangeness suppression factor in c fragmentation $\approx \frac{1}{39}$

Summary & Outlook

Summary

.

- Fragmentation fractions are consistent with universality
- Ratio of u to d is consistent with Isospin invariance
- Vector to Pseudoscalar ratio has been measured is inconsistent with naive spin counting
- HERA II outlook
 - More luminosity
 - MVD will reconstruct secondary vertices and measure lower P_t

BONUS SLIDES

There now follows a selection of additional slides for the interested reader

•

◆□ > ◆□ > ◆豆 > ◆豆 > → 豆 → の < ⊙

Reconstruction Λ_c^+ baryons

- Decay channel: $\Lambda_c^+ \to K^- p \pi^+$
- Λ_c^+ constructed from tracks of + + charge configuration
- Given that $M(p) >> M(\pi)$
 - M(p) is assigned to the + track with highest p
 - Remaining + track is assigned $M(\pi)$
 - M(K) assigned to remaining track and $M(Kp\pi)$ is calculated
- To reduce background:
 - ▶ $p_T(K) > 0.75$, $p_T(p) > 1.3$, $p_T(\pi) > 0.5$ GeV
 - $\cos \theta^*(K) < -0.9$.
 - $\cos \theta^*(p) > 0.25$.
 - $p^*(\pi) > 90$ MeV. $p^*(\pi)$ is $p(\pi)$ in the Λ_c^+ rest frame
 - Cuts on dE/dx values of decay tracks

 $\theta^*(X)$ is θ between X in Λ_c^+ rest frame and Λ_c^+ line of flight in lab

|▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ● ●

D^{*+}

Reconstruction of additional D^{*+} mesons

- Decay channel: $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi_s^+$
- D^{*+} constructed from tracks of -++ configuration
- ► +- tracks with p_T > 0.4 GeV combined in pairs to form D⁰ candidates
- K and π masses assumed in turn and $M(K\pi)$ calculated
- D⁰ candidate kept provided
 - $1.81 < M(K\pi) < 1.92 \text{ GeV}$
 - and either $p_T(D^0) < 3.8$ GeV or $|\eta| > 1.6$
- Remaining + track assigned $M(\pi)$ if $p_T > 0.2$ GeV
- $\Delta M = M(D^{*+}) M(D^0)$ histogrammed

・ロト ・同ト ・ヨト ・ヨト 三日

D_s^+

Reconstruction of D_s^+ mesons

- Decay channel: $D_s^+ \to \phi(\to K^+ K^-) \pi^+$
- Oppositely charged tracks with p_T > 0.7 GeV assigned M(K) to form \(\phi\) candidates
 - ϕ candidate kept if $M(\phi) 8 \text{MeV} < M(KK) < M(\phi) + 8 \text{MeV}$
- ▶ Any additional $p_T > 0.5$ GeV track combined with ϕ to form D_s^+ candidate
- to reduce background:
 - cos θ* < 0.85. θ* is angle between π in D*+ rest frame and D*+ line of flight in lab frame
 - |cos³θ'(K)| > 0.1. theta'(K) is angle between K and π in φ rest frame. Motivated by spin alignments.

Reconstruction of D^0 mesons

- Decay channel: $D^0 \rightarrow K^- \pi^+$
 - Oppositely charged tracks with p_T > 0.8 GeV from D⁰ candidates
 - K and π masses are assigned to each track $\rightarrow M(K\pi)$ calculated
 - ► Rest frame angle between $K, \pi \ \theta^*(K)$ is cut $|\cos \theta^*(K)| < 0.88$
- Ambiguity in K, π assignment to tracks is corrected for by 'tagging' D^0 's arising from $D^{*+} \rightarrow D^0 \pi_s$
 - In this decay K, π are correctly assigned to D^0 decay tracks
 - This D^0 spectrum using incorrect assignment is normalised by $N^{\text{untag}}(D^0)/N^{\text{tagged}}(D^0)$ and subtracted from the untagged D^0 spectrum.

Reconstruction of D^+ mesons

- Decay channel: $D^+ \rightarrow K^- \pi^+ \pi^+$
 - ► Like charged tracks with p_T > 0.5 GeV combine with third opposite charge track to from D⁺ candidates
 - π masses are assigned to both like charged tracks, K mass to third and $M(K\pi\pi)$ calculated
 - Angle between K in D⁺ rest frame and D⁺ line of flight in lab frame is cut at | cos θ^{*}(K)| < 0.88</p>
- ► Background reduced by removing M(Kππ) − M(Kπ) < 0.15 GeV candidates
- ▶ Background from $D_s^+ \rightarrow \phi(\rightarrow K^+K^-)\pi^+$ suppressed by demanding
 - ► |M(1,2) M(φ)| > 8 MeV where 1,2 are any two opposite charge D⁺ candidate tracks.

Systematics

Systematics

Systematics are determined by changing the analysis procedure and repeating all calculations.

The following groups or systematic uncertainty were considered:

- The model dependence of the acceptance corrections
 - Using the HERWIG MC sample
 - Varying the $p_T(D, \Lambda_c)$ and $\eta(D, \Lambda_c)$
 - Changing the MC fraction of charged D mesons produced in a vector state from 0.6 to 0.5 or 0.7
- The uncertainty of the beauty subtraction
 - The *b*-quark σ was varied by a factor of 2
 - The branching ratios of *b*-quarks to charm hadrons were varied by their uncertainties

Systematics II

The uncertainty of the tracking simulation

- All momenta varied by $\pm 0.3\%$ (magnetic field uncertainty)
- Track loss probability varied by $\pm 20\%$
- Track momentum and angular resolutions varied by ^{+20%}_{-10%} (asymmetric resolution variation arise because MC signals had narrower widths than data)
- The uncertainty of the CAL simulation
 - CAL energy scale varied by $\pm 2\%$
 - CAL resolution varied by $\pm 20\%$
 - Efficiencies of CAL first-level trigger varied

(4月) (4日) (4日)

Systematics III

Systematics III

- Uncertainties related to signal extraction
 - ► For the *D*⁰ signals the background parameterisation and fitted range varied
 - ▶ for the additional D*+ signal the area used in background normalisation was varied and the fit was used instead of the subtraction procedure.
 - for the D⁺ D⁺_s and Λ⁺_c signals the background parameterisation, fitted region and amounts of mutual reflections were varied
- ▶ The uncertainties of the luminosities of the $e^-p(\pm 1.8\%)$ and $e^+p(\pm 2.25\%)$ were included
- ► The uncertainty in the rate of charm-strange barons