Measurement of Charm and Beauty Dijet Cross Sections in Photoproduction at HERA using the H1 Vertex Detector

Lars Finke April, 22nd 2006

DIS 2006, Tsukuba, Japan Heavy Flavours Working Group

Motivation

* Aims of this analysis:

- → Measurement of charm & beauty dijets in high p_t photoproduction at HERA.
- → Ability to reach the high p_t regime ($p_t > 2m_b$).
- Inclusive measurement using impact parameter of tracks. (Reconstructed with the H1 silicon vertex detector)

Central Silicon Tracker (CST)

- Measurement
- → Differential charm & beauty dijet cross sections.
- → Heavy Quark fractions.
- Heavy Quark enriched data sample.

- To be submitted to Eur., Phys., J. C in April 2006

Photoproduction of Charm & Beauty at HERA

Theory models:

Hard scale provided by...

- * heavy quark masses.
- * p_t^{c,b}
 - (event selection $p_t^{jet} > 11$ (8) GeV).

LO (α_s) + Parton Shower:

- * DGLAP evolution, incl. flavour excitation **PYTHIA**
- * CCFM evolution, $\gamma g \rightarrow QQ$ CASCADE

NLO (α_s²) calculations:

* Fixed order massive; c, b produced pert. FMNR

20

Heavy Flavor Signal Extraction

* Using significances of two highest significance tracks.

- * S₁: Highest significance track for 1 track events.
- * S₂: Significance of the second highest significance track for >1 track events.

* Subtract negative side in $S_1 \& S_2$ from positive.

* Fit scale factors for c, b, uds from subtracted spectra. (+ total number of events)

Heavy Flavor Signal Extraction

* Using significances of two highest significance tracks.

- * S₁: Highest significance track for 1 track events.
- * S₂: Significance of the second highest significance track for >1 track events.

* Subtract negative side in $S_1 \& S_2$ from positive.

* Fit scale factors for c, b, uds from subtracted spectra. (+ total number of events)

Kinematic range:

* $Q^2 < 1 \text{ GeV}^2$ * $p_t^{\text{jet}} > 11$ (8) GeV * 0.15 < y < 0.8 * -0.9 < $\eta^{\text{jet}} < 1.3$

Total Integrated Cross Section

-		Charm [pb]	Beauty [pb]
_	Data	$702 \pm 67(stat.) \pm 95(syst.)$	$150 \pm 17(stat.) \pm 33(syst.)$
(massi	ive) FMNR	500^{+173}_{-99}	83^{+19}_{-14}
	PYTHIA	484	76
	CASCADE	438	80

NLO QCD:

- → FMNR corrected to hadron level (5-10%).
- → Charm: FMNR somewhat lower, but consistent with (large) theoretical uncertainties.
- → **Beauty**: FMNR lower by factor 1.8 (1.6 σ).

LO QCD:

➔ Pythia and Cascade similar low in normalization as FMNR.

 $\frac{d\sigma/dp_t^{\ jet1}}{(ep \rightarrow ecc(bb)X \rightarrow ejjX)}$

 $Q^2 < 1 \ GeV^2$, 0.15 < y < 0.8, $p_t^{jet} > 11$ (8) GeV, $-0.9 < \eta^{jet} < 1.3$

→ Highest p, region ever reached at HERA for charm & beauty jets.

- → Charm: Larger theory errors, data consistent with NLO. MC models similar to FMNR.
- → Beauty: Data somewhat higher than all QCD models. Shape well described.

$$\frac{d\sigma/dx_{\gamma}^{obs}}{(ep \rightarrow ecc(bb)X \rightarrow ejjX)}$$

$$x_{\gamma}^{obs} = \frac{\sum_{jet_1, jet_2} (E - P_z)}{\sum_{hadrons} (E - P_z)}$$

 $Q^2 < 1 \text{ GeV}^2$, 0.15 < y < 0.8, $p_t^{\text{jet}} > 11$ (8) GeV, -0.9 < $\eta^{\text{jet}} < 1.3$

- Data has significant resolved-like component (x_γ^{obs} < 0.85). Shape nicely described by Pythia, Cascade too hard.</p>
- Charm: Large x_{γ}^{obs} well described by FMNR.
- **Beauty**: FMNR much too low at small x_{γ}^{obs} .

 $d\sigma/dp_t^{jet1}$ (ep \rightarrow ecc(bb)X \rightarrow ejjX)

 $Q^2 < 1 \text{ GeV}^2$, 0.15 < y < 0.8, $p_t^{jet} > 11$ (8) GeV, -0.9 < $\eta^{jet} < 1.3$

- → Charm: FMNR gives good description of both, normalization and shape.
- **Beauty**: Data significantly better described by NLO QCD than for whole region of x_{v}^{obs} .
- → MC models fall below FMNR and data.

Heavy Quark Fractions

Fractions normalized to measured flavor inclusive dijet cross sections.

- → Relative charm and beauty fractions increase towards large x_{γ}^{obs} . (where direct photon-gluon processes dominate)
- Constant fractions in the region $x_{\gamma}^{obs} > 0.85$.
- → For x_{γ}^{obs} > 0.85: measured ratio is $f^{c\bar{c}}/f^{b\bar{b}}$ =5.1±1.1(*stat*.)

Consistent with expectation from **naïve quark charge counting** assuming **all quarks to be massless**.

Measurement of charm and beauty dijet cross sections in photoproduction using the H1 Vertex Detector at HERA.

To be submitted to Eur., Phys., J. C in April 2006

* Charm:

 Data consistent with NLO calculations (normalization and shape) taking the (large) theory uncertainties into account.

* Beauty:

- → Data found somewhat (1.6 σ) higher than NLO prediction. Shape well described.
- → Main differences seen at low x_v^{obs} .
- → For high x_{γ}^{obs} differential cross sections as functions of p_t and η (not shown in talk) seen to be consistent with NLO.

* Fractions:

- → Relative charm and beauty fractions seen to be constant.
- → Measured charm and beauty fractions at high x_{γ}^{obs} consistent with values 4/11 and 1/11, i.e. the naïve expectation for the bgf process for massless quarks.

 $\frac{d\sigma/d\overline{\eta}}{(ep \rightarrow ecc(bb)X \rightarrow ejjX)}$

 $Q^2 < 1 \text{ GeV}^2$, 0.15 < y < 0.8, $p_t^{jet} > 11$ (8) GeV, -0.9 < $\eta^{jet} < 1.3$

→ Mean pseudo-rapidity of the two leading jets $\overline{\eta}$.

- → Charm: Larger theory errors, data consistent with NLO. MC models similar to FMNR.
- → Beauty: Data somewhat higher than all QCD models. Shape well described.

$\label{eq:star} \begin{array}{l} d\sigma/d\overline{\eta} \\ (ep \rightarrow ecc(bb)X \rightarrow ejjX) \end{array}$

 $Q^2 < 1 \ GeV^2$, 0.15 < y < 0.8, $p_t^{jet} > 11$ (8) GeV, -0.9 < $\eta^{jet} < 1.3$

Supress contributions from resolved photon processes: $x_{v}^{obs} > 0.85$ **CHARM BEAUTY** dg/dft [pb] do/dŋ [pb] 800 $ep \rightarrow ec\overline{c}X \rightarrow ejjX$ $ep \rightarrow eb\overline{b}X \rightarrow ejjX$ Data Data 100 **Pythia Pvthia H1 H1** Cascade Cascade 600 - NLO QCD⊗had NLO QCD \otimes had 400 $x_{v}^{obs} > 0.85$ $x_{v}^{obs} > 0.85$ 50 200 0 -0.5 -0.5 0.5 0.5 0 1 0 η η

- → Charm: Data consistent with FMNR.
- **Beauty**: Data nicely described by NLO QCD (better than for whole region of x_{v}^{obs}).
- → MC models fall below FMNR and data.

* FMNR: fixed order massive calculation: BGF + HO.

* Calculations done using CTEQ5F3, GRV-HO and $m_c = 1.5$ GeV, $m_h = 4.75$ GeV.

* Scales:
$$\mu_r = \mu_f = m_t = \sqrt{m_q^2 + p_{t,q\overline{q}}^2}$$

- * p_t weighted k_t clustering jet algorithm used.
- * Perturbative uncertainties estimated by variation of the scales μ_f and μ_r (½ 2).
- * Parameter uncertainties estimated by variations of the quark masses and the pdf.
- * Parton to hadron corrections done using PYTHIA.
- * Total uncertainties: 30 35 % for charm and 20 25 % beauty.