Experimental results on heavy quark fragmentation

Leonid Gladilin (SINP MSU)

Московский Государственный Университет им. М.В. Ломоносова

DIS 2006, April 20-24

OUTLINE:

Introduction

- **b** fragmentation functions
- b fragmentation branchings
- b fragmentation ratios
- c fragmentation in e^+e^-
- c fragmentation at HERA

Summary

BACKUP:

estimates of extrapolation factors fragm. branchings for excited D mesons

Heavy Quark fragmentation issues

Important to measure

HQ fragmentation to find :

- 1) What is the proper parameterisation for the fractional transfer of b/c-quark energy/momentum to a given B/D-meson (z) ? fragmentation function (FF), f(z) or D(z)
- 2) What are the relative fragm. branchings (FB's) of B/D-hadrons ? $f(c \rightarrow D) = \frac{N(D)}{N(c)} = \frac{\sigma(D)}{\sum_{\text{all}} \sigma(D)}$
 - a) Are *u* and *d* quarks produced equally ? $R_{u/d} = \frac{c\bar{u}}{cd}$
 - b) What is the s-quark production suppression ? $\gamma_s = \frac{2 c \bar{s}}{c \bar{d} + c \bar{u}}$
 - c) Are vector (B^*/D^*) and pseudoscalar (B/D) mesons produced as predicted by spin counting ? $P_v = \frac{V}{V+PS}$ (= 0.75 ?)
- 3) Are these functions, branchings and ratios universal ? compare results in e^+e^- annihilations with those at HERA

Heavy Quark fragmentation in e^+e^- annihilations

pQCD is applicable to "initial" Q-fragmentation: LO, NLO, LL, NLL, ... anyhow, some parameterisation is needed for the non-perturbative (NP) rest the NP parameterisation is strongly dependent from the perturbative core (it is wrong to use MC fragmentation for NLO w/o full retuning the fragm. parameters) the NP parameterisation can include some decays

FB's are expected to be independent from the perturbative core

b fragmentation function, FF with LL MC

measured at LEP and SLD from sec. vertices or s/l decays (ALEPH)

in terms of the scaled energy: $x \equiv E_{hadron}/E_{beam}$ for weakly decaying B hadrons

 $< x >= 0.7193 \pm 0.0016^{+0.0038}_{-0.0033}$ (OPAL)

FF with LL Monte Carlo Bowler, $\frac{1}{z^{1+bm_{\perp}^2}}(1-z)^a \exp(\frac{-bm_{\perp}^2}{z})$, and Lund symmetric, $\frac{1}{z}(1-z)^a \exp(\frac{-bm_{\perp}^2}{z})$, are in good agreement with data (2 parameters) Kartvelishvili et al., $z^{\alpha}(1-z)$, is o.k. with 1 parameter Collins-Spiller, $(\frac{1-z}{z} + \frac{(2-z)\epsilon}{1-z})(1+z^2)(1-\frac{1}{z}-\frac{\epsilon}{1-z})^{-2}$, and Peterson are too broad (1 par.)

 $z \equiv (E+p_{||})_{\rm hadron}/(E+p)_{\rm quark}$

HERWIG cluster model disfavoured

(what about MC@NLO ?)

b FF with NLO+NLL+Sudakov pQCD

Cacciari, Nason, Oleari

 $D_{NP}(x) \propto (1-x)^a x^b$ (Colangelo-Nason)

provides reasonable description with $a = 24 \pm 2, b = 1.5 \pm 0.2$

b fragmentation branchings

fit of the secondary vertex charge: $f^+ = (42.09 \pm 0.82 \pm 0.89)\%$ using $f(b \rightarrow \Xi_b^-) = (1.1 \pm 0.5)\%$ from LEP measurements of $\Xi_b^- \rightarrow \Xi^- l^- \bar{\nu}_l X$ and neglecting $\Omega_b^$ $f_u = (40.99 \pm 0.82 \pm 1.11)\%$

HFAG from $B_s^0 \to D_s^- l^+ \nu_l X$, $\Lambda_b^0 \to \Lambda_c^+ l^- \bar{\nu}_l X$, $\Xi_b^- \to \Xi^- l^- \bar{\nu}_l X$ using $f_u = f_d$ and $f_u + f_d + f_s + f_{\text{baryon}} = 1$:

 $f_u = f_d = (40.3 \pm 1.1)\%$ using time-integrated mixing $f_s = (8.8 \pm 2.1)\%$ probabilities $(f_d \text{ and } f_s) \Longrightarrow$ $f_{\text{baryon}} = (10.7 \pm 1.8)\%$ $f_u = f_d = (39.7 \pm 1.1)\%$ $f_s = (10.7 \pm 1.1)\%$ $f_{\text{baryon}} = (9.9 \pm 1.7)\%$

b fragmentation ratios

a) $R_{u/d} = f_u/f_d \equiv 1$ by construction (agrees with DELPHI's f_u measurement) b) $\gamma_s = \frac{2f_s}{f_u + f_d} = 0.27 \pm 0.03$ B_s production suppressed by factor ≈ 3.7

c) P_v $B^* \rightarrow B\gamma$ $P_v = \sigma(B^*)/\sigma(B)$ OPAL, ALEPH, DELPHI, L3 : $P_v = 0.75 \pm 0.04$ agrees with spin counting

c fragmentation function, NLO with Peterson FF

Fixed-order approach (NLO fits of P. Nason and C. Oleari) :

 $\epsilon(D^*, D_s) = 0.035$ ARGUS data \leftarrow Recommended !

Resummed approach (LEP I data fit):

Kniehl et al. $\epsilon(D^*) = 0.116$

(fit results depend from the perturbative core)

c fragmentation function with LL MC

Recent precise measurements from CLEO and Belle $\langle x_p \rangle = 0.611 \pm 0.007 \pm 0.004$ (CLEO, D^{*+})

Qualitatively, the same picture as for b FF with LL MC

differential fragmentation ratios (Belle)

c FF with NLO+NLL+Sudakov pQCD

Cacciari, Nason, Oleari

the difference for D^{*+} hadroproduction up to $\mathbf{20}\%$

experimental info on fragmentation in hadroproduction ?

Measurement of $c \rightarrow D^{*+}$ fragmentation function

In e^+e^- annihilations, $D^{*\pm}$ energy is related to $\sqrt{s}/2$. In ep ?

1) ZEUS: find jet containing $D^{*\pm}$ and relate the $D^{*\pm}$ energy to the energy of this jet: $Q^2 < 1 \operatorname{GeV}^2$, $P_T(D^{*\pm}) > 2 \operatorname{GeV}$, $E_T^{\text{jet}} > 9 \operatorname{GeV}$

$$z = (E + p_{||})^{D^*} / (E + p_{||})^{\text{jet}} \equiv (E + p_{||})^{D^*} / 2E^{\text{jet}}$$

2) H1, jet method: $Q^2 > 2 \text{ GeV}^2$, $P_T(D^{*\pm}) > 1.5 \text{ GeV}$, $E_T^{\text{jet}} > 3 \text{ GeV}$

$$z_{\rm jet} = (E + p_{||})^{D^*} / (E + p)^{\rm jet}$$
 in $\gamma^* p$

3) H1, hemisphere method:

$$z_{\text{hem}} = (E + p_{||})^{D^*} / \sum_{\text{hem}} (E + p)$$
 in $\gamma^* p$

Bowler and Kartvelishvili parameterizations

Parameters are extracted using MC (PYTHIA or RAPGAP+PYTHIA), i.e. they are optimized input parameters of the MC simulations

Peterson parameterization: $f(z) \propto \frac{1}{z(1-1/z-\epsilon/(1-z))^2}$

ZEUS 1/odo/dz 2.5 • ZEUS (prel.) 1996-2000 **PYTHIA (Peterson)** 2 $\varepsilon = 0.1$ $\epsilon = 0.064$ $\varepsilon = 0.02$ 1.5 1 Fit: $\epsilon = 0.064 \pm 0.006^{+0.011}_{-0.008}$ 0.5 $\mathbf{Peterson}$ 0 0.2 0.4 0.8 0.6 1 Z $\epsilon = 0.064 \pm 0.006^{+0.011}_{-0.008}$ (ZEUS prel.) $\epsilon = 0.05$ (PYTHIA default) $\epsilon = 0.053$ (LL fit to ARGUS data by Nason and Oleari) uncorrected for D^{**} decays

corrected for D^{**} decays

NLO fits are expected

Charm fragmentation function in ep and e^+e^- collisions

ZEUS

Measurement of *c*-fragmentation ratios and branchings D^{\pm} and *c* ground states: D^0 , D_s^{\pm} , D^{\pm} and Λ_c^{\pm}

 $R_{u/d}$ measurement

$$R_{u/d} = \frac{c\bar{u}}{c\bar{d}} = \frac{\sigma^{dir}(D^{0,*0})}{\sigma^{dir}(D^{\pm,*\pm})} = \frac{\sigma(D^0) - \sigma(D^{*\pm}) \times BR}{\sigma(D^{\pm}) - \sigma(D^{*\pm}) \times (1 - BR) + \sigma(D^{*\pm})}$$
$$= \frac{\sigma(D^0) - \sigma(D^{*\pm}) \times BR}{\sigma(D^{\pm}) + \sigma(D^{*\pm}) \times BR} = \frac{\sigma^{\text{untag}}(D^0)}{\sigma(D^{\pm}) + \sigma^{\text{tag}}(D^0)} \quad , BR = B_{D^{*+} \to D^0\pi^+} = (67.7 \pm 0.5) \%$$

 $R_{u/d} = 1.100 \pm 0.078 \,(\text{stat})^{+0.038}_{-0.061} \,(\text{syst})^{+0.047}_{-0.049} \,(\text{br}) \quad \textbf{(ZEUS } \gamma p\textbf{)}$

consistent with isospin invariance

u and d quarks are produced equally in charm fragmentation

more precise measurement in DIS ?

$\gamma_{\rm s}$ measurement

$$\gamma_s = \frac{2\,c\bar{s}}{c\bar{d} + c\bar{u}} = \frac{2\,\sigma(D_s^{\pm})}{\sigma(D^{\pm}) + \sigma^{\mathrm{untag}}(D^0) + \sigma^{\mathrm{tag}}(D^0) + \sigma^{\mathrm{add}}(D^{*\pm}) \cdot (1 + R_{u/d})}$$

 $\gamma_{\rm s} = 0.257 \pm 0.024 \,({\rm stat})^{+0.013}_{-0.016} \,({\rm syst})^{+0.078}_{-0.049} \,({\rm br})$ (ZEUS γp)

 D_s production suppressed by factor ≈ 3.9 in *c*-fragmentation

note: excited charm-strange mesons like to decay to non-strange D mesons \implies Lund strangeness-suppression parameter is 10 - 30% larger than the observable γ_s $P_{\rm v}^d$ measurement ($P_{\rm v}^d \equiv P_{\rm v}$ for $c\bar{d}/\bar{c}d$ mesons)

 $P_{\rm v}^d = \frac{V}{V+PS} = \frac{\sigma(D^{*\pm})}{\sigma(D^{*\pm}) + \sigma^{dir}(D^{\pm})} = \frac{\sigma^{\rm tag}(D^0)/BR + \sigma^{\rm add}(D^{*\pm})}{\sigma(D^{\pm}) + \sigma^{\rm tag}(D^0) + \sigma^{\rm add}(D^{*\pm})}$

 $P_{\rm v}^d = 0.566 \pm 0.025 \,({\rm stat})^{+0.007}_{-0.022} \,({\rm syst})^{+0.022}_{-0.023} \,({\rm br}) \quad ({\rm ZEUS} \ \gamma p)$

(recent precise Belle results: $P_v^d = 0.564$)

 $P_{\rm v} \neq 0.75 \implies$ naive spin counting does not work for charm

challenge for fragmentation models:

thermodynamics and string fragmentation predict 2/3

BKL predicts ≈ 0.6 for e^+e^- where only fragmentation diagrams contribute for ZEUS γp kinematic range, BKL prediction is ≈ 0.66

Charm fragmentation branchings, $f(c \rightarrow D, \Lambda_c) = \sigma(D, \Lambda_c) / \sigma_{gs}$

consistent with universality of charm fragmentation branchings

a half of the difference in $f(c \to D^{*+})$ is due to the difference in $f(c \to \Lambda_c^+)$

Summary

Measurements of HQ fragmentation

- test pQCD calculations
- provide non-perturbative input

LL Monte Carlo with Bowler FF is generally able to describe b/c fragmentation fails for $x_p(D_s^+)/x_p(D^+)$ and $x_p(\Lambda_c^+)/x_p(D^+)$

NLO/NLL pQCD calculations are compatible with high-precision FF measurements

sizeable difference between fits to CLEO+Belle and ALEPH data observed

measurements of b/c fragmentation ratios suggest

- u and d quarks are produced equally in HQ fragmentation
- *s*-quark production suppressed by factor 3 4 in *c*-fragmentation
- $P_{\rm v}(b) = 0.75 \implies$ naive spin counting works for beauty
- $P_{\rm v}(c) \neq 0.75 \implies$ naive spin counting does not work for charm. Why ?

Measurements of charm fragmentation at HERA generally support the hypothesis that fragmentation proceeds independently of the hard sub-process

Estimates of extrapolation factors

factors which correct the ZEUS ratios and branchings measured in the accepted $P_T(D, \Lambda_c)$ and $\eta(D, \Lambda_c)$ region to the full phase space

	Peterson (PYTHIA)	Bowler (PYTHIA)	Cluster model (HERWIG)
$R_{u/d}$	$0.99\substack{+0.02\\-0.00}$	$0.99\substack{+0.02\\-0.00}$	$1.00\substack{+0.01 \\ -0.00}$
γ_s	$1.04\substack{+0.04 \\ -0.07}$	$1.00\substack{+0.05 \\ -0.04}$	$1.18\substack{+0.07 \\ -0.05}$
$P_{ m v}^d$	1.00 ± 0.02	$0.97\substack{+0.01 \\ -0.00}$	$0.96^{+0.02}_{-0.01}$
$f(c \to D^+)$	$1.00\substack{+0.02\\-0.01}$	$1.02\substack{+0.01 \\ -0.02}$	$0.99_{-0.03}^{+0.01}$
$f(c \to D^0)$	0.99 ± 0.01	0.98 ± 0.01	$0.96^{+0.00}_{-0.02}$
$f(c \to D_s^+)$	$1.03\substack{+0.03 \\ -0.06}$	$1.00\substack{+0.04\\-0.03}$	$1.15\substack{+0.06 \\ -0.05}$
$f(c\to\Lambda_c^+)$	$1.01\substack{+0.02 \\ -0.05}$	$1.08\substack{+0.03\\-0.02}$	$1.46_{-0.09}^{+0.03}$
$f(c \to D^{*+})$	$1.00\substack{+0.02\\-0.03}$	$0.96\substack{+0.00\\-0.02}$	$0.93^{+0.01}_{-0.02}$

large extrapolation factors are not expected

Fragmentation branchings for excited *D* **mesons**

Using world average for $f(c \rightarrow D^{*+})$:

	$f(c \to D_1^0) \ [\%]$	$f(c \to D_2^{*0})$ [%]	$f(c \to D_{s1}^+) ~[\%]$
ZEUS (prel.)	$1.46 \pm 0.18^{+0.33}_{-0.27} \pm 0.06$	$2.00 \pm 0.58^{+1.40}_{-0.48} \pm 0.41$	$1.24 \pm 0.18^{+0.08}_{-0.06} \pm 0.14$
CLEO	1.8 ± 0.3	1.9 ± 0.3	
OPAL	2.1 ± 0.8	5.2 ± 2.6	$1.6 \pm 0.4 \pm 0.3$
ALEPH	1.6 ± 0.5	4.7 ± 1.0	$0.94 \pm 0.22 \pm 0.07$
DELPHI	1.9 ± 0.4	4.7 ± 1.3	

1) the same amounts of excited D mesons in e^+e^- and ep data

- 2) situation with $f(c \rightarrow D_2^{*0})$ is not clear
- 3) $f(c \to D_{s1}^+)$ is twice as large as the expectation : $\gamma_s \times f(c \to D_1^0) \approx 0.3 \times 2\% = 0.6\%$

Why $f(c \rightarrow D_{s1}^+)$ is so large ?

Is it connected with its strange helicity ?