Probing QCD With Rare Charmless *B* Decays

Wolfgang Gradl For the BABAR and BELLE collaborations

The University of Edinburgh

DIS 2006

Outline

Introduction

The *B* factories Rare charmless *B* decays

Constraining $\Delta S_f = S_f - \sin 2\beta$ $\sin 2\beta$ in $b \rightarrow q\bar{q}s$ penguins Constraining SM pollution

BF, CP And A_{ch}

Measurements related to α/ϕ_2 Other charmless *B* decays

All results preliminary unless journal reference given

The *B* factories: BELLE and *BABAR*

 $e^+e^- \rightarrow \Upsilon(4S) \rightarrow BB$ Asymmetric beam energies

- KEK-B: 8 GeV $e^- \times 3.5$ GeV e^+
- $\mathcal{L}_{int} \approx 560 \, \text{fb}^{-1}$ so far

- ► PEP-II: 9 GeV $e^- \times 3.1$ GeV e^+
- $\mathcal{L}_{int} \approx 330 \, \text{fb}^{-1}$ so far

Detecting a signal

- Largest backgrounds from $e^+e^- \rightarrow q\overline{q}$
- Kinematic variables:

Event shape for background suppression:

W. Gradl (U. Edinburgh)

Measuring time-dependent CP asymmetries

Unitarity triangle

Unitarity of the CKM matrix: $V_{td}V_{tb}^* + V_{cd}V_{cb}^* + V_{ud}V_{ub}^* = 0$

Time-dependent CP asymmetry in B^0 - \overline{B}^0 mixing

$$\mathcal{A}_{cp}(\Delta t) = \frac{\Gamma(\overline{B}^0 \to f) - \Gamma(B^0 \to f)}{\Gamma(\overline{B}^0 \to f) + \Gamma(B^0 \to f)}$$
$$= \frac{S_f \sin \Delta m_d \Delta t - C_f \cos \Delta m_d \Delta t}{S_f \sin \Delta m_d \Delta t - C_f \cos \Delta m_d \Delta t}$$

For example $B^0 \rightarrow J/\psi K_s^0$ ($b \rightarrow c\bar{c}s$): $S_{J/\psi K_s^0} = \sin 2\beta$, $C_{J/\psi K_s^0} = 0$

W. Gradl (U. Edinburgh)

Rare Charmless B Decays

Rare charmless B decays

- Contributing amplitudes: CKM suppressed trees, penguins,
- Can be used to study

. . .

- Interfering SM amplitudes
- CP violation
- Effects of new particles in loops (New Physics?)
- Constrain theoretical models

Constraining $\Delta S_f = S_f - \sin 2\beta$

$\sin 2\beta$ from $b \rightarrow q\overline{q}s$ penguins

	sin(2)	β^{eff} =	sin	(20	(http://www.self.org/action/ac
b→ccs	World Avera	ge			0.69 ± 0.03
φ Κ ⁰	Average		+*-		0.47 ± 0.19
η' Κ ⁰	Average		н		0.50 ± 0.09
f ₀ K _S	Average		F	H	0.75 ± 0.24
$\pi^0 K_S$	Average		⊢★ ⊣		0.31 ± 0.26
$\pi^0 \pi^0 K_S$	Average	* 1			-0.84 ± 0.71
ω K _S	Average		H	H	0.63 ± 0.30
$\rho^0 K_S$	Average		*		0.17 ± 0.58
K ⁺ K ⁻ K ⁰	Average		⊢ ⊷-		$0.51 \pm 0.14 \stackrel{+0.11}{_{-0.08}}$
К ₅ К ₅ К ₅	Average		+	H	0.61 ± 0.23
-3	-2 -	1 ()	1	2 3

- New physics can show up in $b \rightarrow s$ penguins
- Sub-dominant diagrams introduce additional (weak) phases
- What is SM expectation for $\Delta S_f = S_f \sin 2\beta$?
- ► Models prefer △S_f > 0 Beneke, Phys. Lett. B 620, 143; Cheng *et al.*, Phys. Rev. D 72, 094003
- Measuring related modes helps pin down expected deviations

Constraining SM pollution in $B^0 \rightarrow \phi K^0$

Constrain sub-dominant (V_{ub}) contributions to B⁰ → φK⁰₅ via SU(3) flavour relations Grossman *et al.*, Phys. Rev. D 68, 015004 (2003)

$$\begin{split} \Delta S_{\phi K_{S}^{0}} &\propto \quad \frac{1}{4} \mathcal{B}(\rho^{0} \pi^{0}) - \frac{1}{4} \mathcal{B}(\omega \pi^{0}) + \frac{1}{2} \sqrt{\frac{3}{2}} \left[c \mathcal{B}(\phi \eta) - s \mathcal{B}(\phi \eta') \right] \\ &+ \frac{\sqrt{3}}{4} \left[c \mathcal{B}(\omega \eta) - s \mathcal{B}(\omega \eta') \right] - \frac{\sqrt{3}}{4} \left[c \mathcal{B}(\rho^{0} \eta) - s \mathcal{B}(\rho^{0} \eta') \right] \\ &+ \frac{1}{2} \left[\mathcal{B}(\bar{K}^{*0} K^{0}) - \mathcal{B}(K^{*0} \bar{K}^{0}) \right] - \frac{1}{2\sqrt{2}} \mathcal{B}(\phi \pi^{0}) \end{split}$$

Search for $B^0 \rightarrow K^{*0}K^0_s$ BABAR preliminary, 208 fb⁻¹

Upper limit at 90% C.L.:

 $\mathcal{B}(\bar{K}^{*0}K^0) + \mathcal{B}(K^{*0}\bar{K}^0) < 1.9 \times 10^{-6}$

SU(3) upper bound $\Delta S_{\phi K^0} < 0.43$

Improved $\mathcal{B}(\phi\pi^0)$ BABAR preliminary, 211 fb⁻¹

Upper limits at 90% C.L.: $\mathcal{B}(B^0 \to \phi \pi^0) < 2.8 \times 10^{-7}$ $\mathcal{B}(B^+ \to \phi \pi^+) < 2.4 \times 10^{-7}$

W. Gradl (U. Edinburgh)

Constraining SM pollution in $B^0 \rightarrow \eta' K^0$

- Constrain $\Delta S_{\eta'K_s^0}$ using $B^0 \to \eta^{(\prime)}\pi^0, \eta'\eta$.
- ► Expected *B* in the ranges $0.2 1 \times 10^{-6} (\eta^{(\prime)} \pi^0)$ and $0.3 2 \times 10^{-6} (\eta' \eta)$.

Upper limits at 90% CL:

$\mathcal{B}(B^0 \to \eta \pi^0)$	<	$1.3 imes10^{-6}$
${\cal B}(B^0 o \eta' \eta)$	<	$1.7 imes10^{-6}$
${\cal B}(B^0 o \eta' \pi^0)$	<	2.1×10^{-6}

*B*⁴*B*⁴*R* preliminary, 211 fb⁻¹ hep-ex/0603013, accepted by PRD-RC $\mathcal{B}(\eta'\pi^0) \quad = \quad (2.79^{+1.02+0.25}_{-0.96-0.34}) \times 10^{-6}$

BELLE hep-ex/0603001 (next slide)

► Estimate 20% improvement in prediction of ΔS_{η'K⁰_S} following Gronau *et al.*, Phys. Lett. B **596**, 107
 ► Similar improvement for sin 2α measured in B⁰ → π⁺π⁻

W. Gradl (U. Edinburgh)

Rare Charmless B Decays

 $B \to \eta' \pi$

BELLE $386 \times 10^{6} B\overline{B}$, hep-ex/0603001

 $B^+ \to \eta' \pi^+$ $\mathcal{B} = (1.76^{+0.67+0.15}_{-0.62-0.14}) \times 10^{-6}$ $\mathcal{A}_{ch} = 0.20^{+0.37}_{-0.36} \pm 0.04$

 $\label{eq:basic} \begin{array}{l} \mbox{Previous BABAR:} \\ \mathcal{B}=(4.0\pm0.8\pm0.4)\times10^{-6} \\ \mbox{Phys. Rev. Lett. 95, 131803} \end{array}$

► $B^0 \to \eta' \pi^0$ $\mathcal{B} = (2.79^{+1.02+0.25}_{-0.96-0.34}) \times 10^{-6}$ Significance 3.1 σ

BABAR: $< 2.1 \times 10^{-6}$ hep-ex/0603013

η'π⁺ clearly seen
 η'π⁰ not clear

Search for $B \to K_s^0 K_s^0 K_L^0$

- Pure $b \rightarrow s\bar{s}s$ penguin
- Avoids SM pollution:
- CP eigenstate
- Resonant \(\phi K_s^0\) contribution small, but non-resonant component may be large:

$$\label{eq:B} \begin{split} \mathcal{B} &= (5.23^{+2.52+6.86+0.05}_{-1.96-2.53-0.06}) \times 10^{-6} \\ \text{Cheng et al., Phys. Rev. D 72,} \\ 094003, using factorisation \end{split}$$

- $\epsilon \times \prod \mathcal{B}_i$ small
- Assuming uniform 3-body phase space, and excluding φ: UL at 90% CL:

 $\mathcal{B}(B^0 \to K^0_S K^0_S K^0_L) < 6.4 \times 10^{-6}$

BABAR preliminary, 211 fb $^{-1}$

• Limited use for understanding CPV in $b \rightarrow q \bar{q} s$

CP asymmetries in $B \rightarrow \omega \pi/K$

 Δt , t_{CP} - t_{tag} (ps)

- $b \rightarrow q\bar{q}s$, dominated by single penguin
- ► Expect ΔS_{ωK⁰} ≈ 0.1 and A_{ch} ≈ 0 [Phys. Lett. B 620,143; Phys. Rev. D 72, 014006]

BABAR:

	$B(10^{-6})$	\mathcal{A}_{ch}
$B^+ \rightarrow \omega \pi^+$	$6.1\pm0.7\pm0.4$	$-0.01 \pm 0.10 \pm 0.01$
$B^+ \to \omega K^+$	$6.1\pm0.6\pm0.4$	$0.05 \pm 0.09 \pm 0.01$
$B^0 \rightarrow \omega K_S^0$	$6.2\pm1.0\pm0.4$	-

compatible with BELLE [hep-ex/0508052]

Time-dependent CPV:

$$S = 0.51^{+0.35}_{-0.39} \pm 0.02$$

$$C = -0.55^{+0.28}_{-0.26} \pm 0.03$$

► Fix C = 0 (no direct CPV): $S = 0.60^{+0.42}_{-0.38}$, $\Delta S = 0.12 \pm 0.40$ *BABAR* preliminary, 211 fb⁻¹, hep-ex/0603040, submitted to PRL

Measurements related to α/ϕ_2

Updates on $B \rightarrow \rho \rho$

- ► Penguin amplitudes \Rightarrow $\alpha_{\rm eff} \neq \alpha$
- ▶ Isospin analysis of $B \rightarrow \rho \rho$ to measure shift $2\delta \alpha$ [Gronau & London, Phys. Rev. Lett. **65**, 3381]
- ► $B^+ \rightarrow \rho^+ \rho^0$ measures base of isospin triangle for long. polarised amplitudes:

 Previous world averages [HFAG '05]:

$$\mathcal{B}(\rho^+\rho^-) = (26.2^{+3.6}_{-3.7}) \times 10^{-6}$$

$$\mathcal{B}(\rho^+\rho^0) = (26.4^{+6.1}_{-6.4})\times 10^{-6}$$

hard to reconcile in isospin triangle

W. Gradl (U. Edinburgh)

$$\mathcal{B} = (22.8 \pm 3.8^{+2.3}_{-2.6}) \times 10^{-6}$$

$$f_L = 0.941^{+0.034}_{-0.040} \pm 0.030$$

BELLE 253 fb^{-1} , hep-ex/0601024 submitted to PRL

- Almost entirely longitudinally polarised
- Isospin triangle closes nicely

$$B^+ \to \rho^+ \rho^0$$

BABAR preliminary, 211 fb $^{-1}$

$B^0 \to a_1^{\pm}(1260) \, \pi^{\mp}$

- Can be used to extract α/φ₂ up to 4-fold ambiguity
 [Aleksan *et al.*, Nucl. Phys. B 361, 141]
- Sub-leading penguin amplitude with different weak phase dilutes α
- Can be overcome by exploiting symmetries:
 - Isospin [Gronau & London (1990)]
 - Approximate SU(3) flavour [Dighe, Gronau & Rosner (1998); Gronau & Zupan (2005)]

First step: measure branching fraction

Nice signal seen ($N_{
m sig}=421\pm48$) Assume $BR(a_1^+
ightarrow(3\pi)^+)=100\%$

$$\mathcal{B}(B^0 \to a_1^{\pm} \pi^{\mp}) = (33.2 \pm 3.8 \pm 3.0) \times 10^{-6}$$

BABAR preliminary, 198 fb $^{-1}$ hep-ex/0603050, submitted to PRL

Next step: time dependent analysis

W. Gradl (U. Edinburgh)

Rare Charmless B Decays

DIS 2006 17 / 27

Search for $B^0 \rightarrow a_1^+ \rho^-$

- ► $b \rightarrow u\bar{u}d$ transition: with sufficient statistics, could be used to measure α/ϕ_2
- ► $B \rightarrow 5\pi$ important background contribution for $B \rightarrow \rho\rho$ analyses
- Little known about this decay:

Theory: $\mathcal{B}(B^0 \to a_1^{\pm} \rho^{\mp}) \mathcal{B}(a_1^+ \to (3\pi)^+) = 43 \times 10^{-6}$ [Bauer *et al.*, Z. Phys. C **34**, 103 (1987)] using $|V_{vh}/V_{ch}| = 0.08$

Experiment:
$$\mathcal{B}(B^0 \to a_1^{\pm} \rho^{\mp}) < 3.4 \times 10^{-3}$$

[ARGUS, Phys. Lett. B **241**, 278 (1990), **214** pb⁻¹]

Assume $f_L = 1$ to get most conservative upper limit (90% C.L.):

$${\cal B}(B^0 o a_1^\pm \,
ho^\mp) {\cal B}(a_1^+ o (3\pi)^+) < 61 imes 10^{-6}$$

BABAR preliminary, $100 \, \text{fb}^{-1}$, to be submitted to PRD-RC

Other charmless *B* decays

Search for $B \rightarrow \omega V$ decays

- Expect polarisation in $B \rightarrow VV$ to be $\approx 1 m_V^2/m_B^2$
- ► $B \rightarrow \phi K^*$: $f_L \approx 0.5$
- Penguins?
- Measure related decays $B \rightarrow \omega K^*, \omega \phi$

$\mathcal{B}(B^+ \to \omega \rho^+)$	=	$(10.6 \pm 2.1^{+1.6}_{-1.0}) \times 10^{-6}$
$f_L(\omega \rho^+)$	=	$0.82 \pm 0.11 \pm 0.02$
$\mathcal{A}_{ch}(\omega ho^+)$	=	$0.04 \pm 0.18 \pm 0.02$
$\mathcal{B}(B^0 \to \omega K^{*0})$	<	$4.2 imes 10^{-6}$
$\mathcal{B}(B^+ \to \omega K^{*+})$	<	$3.4 imes 10^{-6}$
${\cal B}(B^0 o \omega ho^0)$	<	$1.5 imes 10^{-6}$
${\cal B}(B^0 o \omega \omega)$	<	$4.0 imes 10^{-6}$
${\cal B}(B^0 o \omega \phi)$	<	$1.2 imes 10^{-6}$
$\mathcal{B}(B^0 \to \omega f_0)$	<	$1.5 imes 10^{-6}$

BABAR preliminary, 211 fb $^{-1}$

Reasonable agreement with predictions [e.g. Ali *et al.*, Phys. Rev. D **60**,014005; Cheng & Yang, Phys. Lett. B **511**, 40]

Dalitz plot analysis of $B^+ \rightarrow K^+ K^+ K^-$

Search for $B \to \eta' \eta' K$

- Motivation:
 - Large $\mathcal{B}(B \to \eta' K)$
 - ► CP violation in $B \to P^0 P^0 Q^0$ [Gershon & Hazumi, 2004], e.g. observation of $B^0 \to K^0_S K^0_S K^0_S$

[BELLE, Phys. Rev. D 69, 012001, *BABAR*, Phys. Rev. Lett. 95, 011810] • Results (@ 90% CL):

 $B \to \eta' K^* / \rho$

- Similarly for $\eta' \rho$:
- ▶ $b \rightarrow u$ colour-suppressed trees dominate
- $\eta' \rho^0$: trees cancel approximately
- $\eta' \rho^+$ small, and $\eta' \rho^0$ very small

- ► $B \rightarrow \eta' K$ unexpectedly large (CLEO '97), much larger than ηK
 - Understood? Interference between two dominant penguin amplitudes [Lipkin 1991] plus enhancements from m_s, form factors, higher-order in α_s [Beneke & Neubert 2003]
 - Predicts η K^{*} large,
 - $\eta' K^*$ small

$B \to \eta' \, K^* / \rho$

Branching Fraction (10^{-6})						
Decay mode	Theoretical p SU(3) flavour	redictions QCD fact.	ns BABAR preliminary fact 211 fb ⁻¹			
$B^0 \to \eta' K^{*0}$	$3.0^{+1.2}_{-0.3}$	$3.9^{+9.2}_{-5.1}$	$3.8\pm1.1\pm0.5$	(4.5 <i>σ</i>)		
$B^+ \to \eta' K^{*+}$	$2.8^{+1.2}_{-0.3}$	$5.1^{+10.3}_{-5.9}$	$4.9^{+1.9}_{-1.7}\pm0.8$	(3.6 <i>σ</i>)	< 7.9	
$B^0 \to \eta' \rho^0$	$0.07\substack{+0.10 \\ -0.05}$	$0.01\substack{+0.12 \\ -0.06}$	$0.4\substack{+1.2+1.6\\-0.9-0.6}$	(0.3 <i>σ</i>)	< 3.7	
$B^+ \to \eta' \rho^+$	$4.9^{+0.7}_{-0.7}$	$6.3^{+4.0}_{-3.3}$	$6.8^{+3.2}_{-2.9}{}^{+3.9}_{-1.3}$	(2.3σ)	< 14	
$B^0 \to \eta' f_0(980)$	$\times \mathcal{B}(f_0 \to \pi^+ \pi^-)$	-)	$0.1^{+0.6+0.9}_{-0.4-0.4}$	(0.2 <i>σ</i>)	< 1.5	
	Phys. Rev.	Nucl. Phys.				
	D 68,074012	B 675 , 333	5	18	****0	
				· F η΄	K	

- Predictions have large error, both compatible with measurements
- Predicted pattern in
 η^(') K^(*)
 seen
- $\eta' \rho^0$ likely to be very small

W. Gradl (U. Edinburgh)

Summary

- Many new and updated results from both B factories
- Rare charmless *B* decays help to improve understanding of Standard Model amplitudes
- More interesting results to come with more data

Backup Slides

Dalitz plot analysis of $B^+ \rightarrow K^+ K^+ K^-$

- Full Dalitz plot analysis, measure amplitudes and relative phases
- Fit B^+ and B^- separately for \mathcal{A}_{ch}

 $\mathcal{B}(B^+ \to K^+ K^+ K^-) = (35.2 \pm 0.9 \pm 1.6) \times 10^{-6}$

Comp.	ρ	ϕ (rad)	F(%)	$F\times \mathcal{B}(B^\pm\to K^\pm K^\pm K^\mp)$	A	$(A_{\min}, A_{\max})_{90\%}$	$\delta \phi \text{ (rad)}$
$\phi(1020)$	1.66 ± 0.06	$2.99 \pm 0.20 \pm 0.06$	$11.8\pm0.9\pm0.8$	$(4.14 \pm 0.32 \pm 0.33) \times 10^{-6}$	$0.00\pm0.08\pm0.02$	(-0.14, 0.14)	$-0.67 \pm 0.28 \pm 0.05$
$f_0(980)$	5.2 ± 1.0	$0.48\pm0.16\pm0.08$	$19 \pm 7 \pm 4$	$(6.5 \pm 2.5 \pm 1.6) \times 10^{-6}$	$-0.31\pm0.25\pm0.08$	(-0.72, 0.12)	$-0.20 \pm 0.16 \pm 0.04$
$X_0(1550)$	8.2 ± 1.1	$1.29\pm0.10\pm0.04$	$121 \pm 19 \pm 6$	$(4.3 \pm 0.6 \pm 0.3) \times 10^{-5}$	$-0.04\pm0.07\pm0.02$	(-0.17, 0.09)	$0.02 \pm 0.15 \pm 0.05$
$f_0(1710)$	1.22 ± 0.34	$-0.59\pm0.25\pm0.11$	$4.8 \pm 2.7 \pm 0.8$	$(1.7 \pm 1.0 \pm 0.3) \times 10^{-6}$	$0.0~\pm~0.5~\pm~0.1$	(-0.66, 0.74)	$-0.07 \pm 0.38 \pm 0.08$
χ_{c0}^{I}	0.437 ± 0.039	$-1.02\pm0.23\pm0.10$	$3.1 \pm 0.6 \pm 0.2$	$(1.10 \pm 0.20 \pm 0.09) \times 10^{-6}$	$0.19\pm0.18\pm0.05$	(-0.09, 0.47)	$0.7 \pm 0.5 \pm 0.2$
χ_{c0}^{II}	0.604 ± 0.034	0.29 ± 0.20	6.0 ± 0.7	$(2.10 \pm 0.24) \times 10^{-6}$	-0.03 ± 0.28	-	-0.4 ± 1.3
NR	13.2 ± 1.4	0	$141 \pm 16 \pm 9$	$(5.0 \pm 0.6 \pm 0.4) \times 10^{-5}$	$0.02\pm0.08\pm0.04$	(-0.14, 0.18)	0

Non-resonant component not flat across DP