Pentaquarks

a brief overview of theoretical status

Atsushi Hosaka, RCNP, Osaka University For DIS06, Tsukuba Feb. 20 (mon) 2006

• Essentials of QCD dynamics for hadrons are yet understood.

• The (non) existence and understanding of it is crucial.

Peak of a narrow resonance ?

Theory papers

Theoretical methods (models)

Structure => Masses, spin, parity, ...

Quark models, Chiral solitons QCD sum rule, Lattice

Reactions => Cross sections, angular dist., . .

Reaction mechanism Role of various mesons

What I would like to address

 Conventional wisdom in the quark model Hadrons as simple bound states of *constituent quarks* Effective QCD ~ confined quarks + residual int. Global success of qqq g.s. baryons and excited states

Questions **Chiral symmetry** (pions), **diquarks**

• Reactions

Total cross sections and *pn* asymmetry Angular distributions

How do baryons look like?

Baryons $\sim qqq$ Mesons $\sim qq^*$

Minimum ingredients

How do baryons look like?

Baryons ~ qqqMesons ~ qq^* Minimum $|B\rangle = |qqq\rangle$

Minimum ingredients

Chiral symmetry = Spontaneously broken => *Massless pions* as Nambu-Goldstone bosons

Baryons could be more complicated ?

 $|B\rangle = |qqq\rangle + |qqq(q\overline{q})\rangle + |qqq(q\overline{q})(q\overline{q})\rangle + \cdots$

What does chiral symmetry do for Pentaquarks ? = parity

$$J^P = 1/2^+, M_{\Theta} \sim 1.5 \text{ GeV}$$

Decay width $1/N_C$ corrections

Formula for general N_C Praszalowiz 2004

$$\Gamma_{\Theta} = \frac{3|\mathbf{p}|^3}{2\pi (M_N + M_{\Theta})^2} \cdot \frac{3(N_c + 1)}{(N_c + 3)(N_c + 7)} \cdot \left(G_0 - \frac{N_c + 1}{4}G_1 - \frac{1}{2}G_2\right)^2$$

For $N_C = 3$ $\Gamma_{\Theta} = 2.3 \text{ MeV} !$

But if first take the limit $N_C \rightarrow \infty$ and set $N_C = 3$

 $\Gamma_{\Theta} = 41 \text{ MeV} \sim \text{Callan-Klebanov}$

The analysis has been checked also in the K-scattering problem, Diakonov et al (05)

Weak pion limit

Five quarks with residual interaction

Depending on the type of interactions

Diquark correl.

Five quarks random

Hadronic molecule

Fall apart ~ Strong dependence on J^P

Hoska-Shinozaki-Oka PRD71. 074025 (2005) Hep-ph/0409103

1/2-	(0s) ⁵ : unique	$\Gamma \sim 500\text{-}1000 \text{ MeV}$
------	----------------------------	---

 $1/2^+$, $3/2^+$ (0s)⁴ (0p) Several configurations

SF	SC	JW
Γ (MeV) ~ 60	~ 30	~ 10

3/2- does not decay (KN in the d-wave)

Full 5-body calculation with scattering states

Hiyama-Kamimura-Yahiro-Hosaka-Toki, Phys.Lett.B633:237-244, 2006, hep-ph/0507105

Hamiltonian

NR quark model of Isgur-Karl

$$\begin{split} H &= \sum_{i} \left(m_{i} + \frac{\mathbf{p}_{i}^{2}}{2m_{i}} \right) - T_{G} + V_{\text{Conf}} + V_{\text{CM}} \\ V_{\text{Conf}} &= -\sum_{i < j} \sum_{\alpha=1}^{8} \frac{\lambda_{i}^{\alpha}}{2} \frac{\lambda_{j}^{\alpha}}{2} \left[\frac{k}{2} \left(\mathbf{x}_{i} - \mathbf{x}_{j} \right)^{2} + v_{0} \right] \\ V_{\text{CM}} &= \sum_{i < j} \sum_{\alpha=1}^{8} \frac{\lambda_{i}^{\alpha}}{2} \frac{\lambda_{j}^{\alpha}}{2} \frac{\xi_{\sigma}}{m_{i}m_{j}} e^{-(\mathbf{x}_{i} - \mathbf{x}_{j})^{2}/\beta^{2}} \sigma_{i} \cdot \sigma_{j} \end{split}$$

Apr. 20-24, 2006

DIS2006

KN-phase shifts

E-E_{th} (MeV)

E-E_{th} (MeV)

Strong qs correlation favors KN rather than [ud][ud]s Resonance of 550 MeV is a complex state

Summary

• Baryons look very differently according to the role of *chiral symmetry*

perhaps the most important ingredient for hadron dynamics

- Strong pion limit Mean field is good for quarks and pions Baryons look chiral solitons, Θ exists! $J^P = 1/2^+$, $\Gamma \sim$ narrow
- Weak pion limit

Quark many body problem with residual interactions qq correlations and/or qq^* correlations, Θ may or may not exist J^P , Γ depends on details of dynamics

Study of Pentaqurks is a key to hadron dynamics

Apr. 20-24, 2006

DIS2006

Production reactions

Effective Lagrangian approach

- *Tree diagrams* with interactions satisfying symmetries
- Parameters: Coupling constants and *form factors*

In Ref.

- Gauge and chiral symmetries => PS and PV schemes
- Different spin and parities
- Coupling constants evaluated from models $g(K^*N\Theta), \mu(\Theta), ...$

n enhanced for J = 3/2or p-suppression

Apr. 20-24, 2006

Tree diagrams

 $\gamma N \rightarrow K \Lambda(1520) J = 3/2^{-1}$

$\Lambda(1520) J^P = 3/2^-$

Form factor	F_1		
Reactions	$\gamma p o K^+ \Lambda^*$	$\gamma n o K^0 \Lambda^*$	
σ	$\sim 900nb$	$\sim 30nb$	
$d\sigma/d(\cos\theta)$	Forward peak	Peak at $\sim 45^\circ$	
$d\sigma/dt$	Good	No data	

 $\Lambda = 700 \text{ MeV} \iff r \sim 0.8 \text{ fm}$

Contact term

- **σ**(**p**) >> σ(**n**)
- Strong forward peak

To be checked by experiments

For
$$\Theta$$
: we expect $\sigma(p) \ll \sigma(n)$

Theta production, $J^P = 3/2$

Predictions $\Lambda = 700 \text{ MeV} \iff r \approx 0.8 \text{ fm}$

J^P	$3/2^+$		$3/2^{-}$		$1/2^+$	
$g_{KN\Theta}$	0.53		4.22		1.0	
$g_{K^*N\Theta}$	± 0.91		± 2		± 1.73	
Target	n	p	n	p	n	p
σ	$\sim 25~{\rm nb}$	$\sim 1~{\rm nb}$	$\sim 200~{\rm nb}$	$\sim 4~\mathrm{nb}$	$\sim 1~{\rm nb}$	$\sim 1~{\rm nb}$
$\frac{d\sigma}{d\cos\theta}$	Forward	$\sim 60^{\circ}$	Forward	—	$\sim 45^{\circ}$	$\sim 45^{\circ}$

The total cross section is very sensitive to Λ

Summary

- Hadrons as building blocks of nuclear physics
- Microscopic descriptions needed to extend to the physics under extreme conditions and of various types of hadronic matter
- Chiral symmetry and quarks for structure and reactions

Key issues:

Chiral symmetry Multiquarks states

LEPS has observed but CLAS does not

LEPS: forward angle region CLAS: side

Their results are *not inconsistent*