b-jets and Z + b-jets at CDF DIS 2006

Daniel Jeans, INFN CNAF & INFN Roma for the CDF collaboration

- introduction
- detector
- jet reconstruction & b-tagging
- analysis strategy
- inclusive b jet production
- Z + b jet production
- conclusions

measurement of heavy flavour production in hadron collisions is an important test of QuantumChromoDynamics

QCD HF production is important background to many rare processes

Z + b-jet sensitive to F.E. and G.S. inclusive b—jet production is sensitive to all mechanisms

reported results use up to $\sim 340 pb^{-1}$ $p\overline{p}$ collisions, 1.96 TeV centre–of–mass energy $\mathcal{L} \sim 10^{32} cm^{-2} s^{-1}$, expect \sim 3 interactions per bunch crossing

CDF detector

ω

jet identification

- jets identified in calorimeter
- I cone algorithm in $\eta - \phi$ space, typical radius 0.7
- jet energy corrections:
- I detector effects
- I absolute energy scale

ί,

energy scale correction

Correction for Cone 0.4 jets

Uncertainty ± σ

Underlying Event

b jet identification

fitting secondary vertex mass spectrum estimate b-fraction of tagged jets by

vertex mass allows separation between tagged b, c and light jets

CDF Run II Preliminary

estimate true b—jet yield using secondary vertex mass fit

 \Downarrow

0.45

 \Rightarrow select events with *b*-tagged jets

general analysis strategy

inclusive b jet cross-section

around $300pb^{-1}$ of data analysed

events triggered by jet triggers requiring calorimeter energy deposits with various E_T thresholds $5 \rightarrow 100$ GeV

consider central (rapidity |y| < 0.7) & high momentum (38 GeV/c $< p_T <$ 400 GeV/c) b-tagged jets

 p_T dependent correction for true b fraction and b-tagging efficiency

measure cross–section for b–jet production as a function of jet p_T

measured inclusive b–jet cross section as a function of jet p_T

inclusive b jet cross-section: NLO comparison

theory uncertainty dominated by factoriz. and renormaliz. scales NLO prediction corrected for Underlying Event and Hadronisation NLO from M.Mangano and S.Frixione (Nucl. Phys. B483, 321 (1997)) $gg \to QQ, \ q\overline{q} \to QQ, \ gg \to QQg, \ q\overline{q} \to QQg, \ qg \to QQq$

CDF Runll Preliminary

Z + b-jet cross-section

select Z^0 decays into e^+e^- and $\mu^+\mu^-$, $66 < m_{ll} < 116$ GeV events triggered by high E_T lepton analysed around $330pb^{-1}$ sensitive to "b content of proton" important background to Higgs & new physics 20000000 Z ~~~~~

Z + b-jet cross-section

require additional tagged let with $E_T > 20$ GeV $\frac{\pi}{2}$ _ Л

	Background	e channel (%)	μ channel (%)
all backgrounds	Fake	4.2 ± 1.2	1.7 ± 0.8
m non– Z^0 :	$t \bar{t}$	1.2 ± 0.2	1.6 ± 0.3
	$Z^0 Z^0$	1.3 ± 0.3	1.5 ± 0.3

SN

frc

fit for c and b fractions

imited statistics \rightarrow measure total cross-section

	nent with NLO predictions	dood adreen
0.52 pb	$0.96 \pm 0.32 \pm 0.14$ pb	$\sigma(Z^0 + b - jet)$
0.0021	$0.0038 \pm 0.0012 \pm 0.0005$	$\sigma(Z^0 + b - jet)/\sigma(Z^0)$
0.0185	$0.0237 \pm 0.0078 \pm 0.0033$	$\sigma(Z^0 + b - jet)/\sigma(Z^0 + jet)$
NLO (MCFM)	CDF RunII measurement	
nty	- small theory scale uncertair	high scale $m_Z \Rightarrow$
hadronization	FM, corrected for U.E. and h	NLO predictions from MCF
$Z^0 + b - jet$)	ment of $\sigma(Z^0)$ to extract $\sigma(Z^0)$	combine with CDF measurer
$\tau(Z^0)$	$+ jet$) and $\sigma(Z^0 + b - jet)/\sigma$	extract $\sigma(Z^0 + b - jet)/\sigma(Z^0)$
	$>$ 20 GeV, $ \eta <$ 1.5)	Z^0 + b-jets (cone 0.7, E_T
	ion for:	measure ratios & cross-secti

Z + b-jet cross-section

conclusions

CDF has measured b—jet production in several topologies

measurements sensitive to different production mechanisms

heavy flavour production at CDF in agreement with NLO predictions

back-up slides

•				
$ m Cone0.7, E_T^{ m jet} > 20~GeV, \eta^{ m jet} < 1.5,$	CDF RUNII	PYTHIA TuneA	NLO	NLO with
$\sqrt{s}=1.96$ TeV, $L\sim335$ pb $^{-1}$	$\operatorname{PreliminaryData}$	(CTEQ5L)	J. Campbell	Had, UE
$\sigma(Z^0 + b \text{ jet})$	$0.96 \pm 0.32 \pm 0.14 ~ m pb$	0.83 pb	0.48 pb	$0.52~\mathrm{pb}$
$\sigma(Z^0+b{ m jet})/\sigma(Z^0)$	$0.0038 \pm 0.0012 \pm 0.0005$	0.0034	0.0019	0.0021
$\sigma(Z^0 + b \operatorname{jet}) / \sigma(Z^0 + \operatorname{jet})$	$0.0237 \pm 0.0078 \pm 0.0033$	0.0207	0.0185	0.0185

