

Charm with ZEUS HERA-II data

Falk Karstens on behalf of the ZEUS collaboration
 <falk.karstens@computer.org>
 University of Freiburg/ Germany

DIS 2006 – 21th April 2006 – HF-2

Outline:

- $D^{*\pm}$ mesons in deep inelastic scattering
- D^0 decay length significance
- D^{\pm} mesons in deep inelastic scattering

Charm search with $D^{*\pm}(2010) \rightarrow D^0(K^{\mp} + \pi^{\pm}) + \pi_s$

- Boson Gluon Fusion is the dominant process in DIS – gluon sensitivity
- open charm pair production
- fragmentation $\mathcal{F}(c, \bar{c} \rightarrow D^{*\pm}) =$ + 0.197 ± 0.012
 - charm deexcitation: Zweig rule strong interaction, short lifetime $\mathcal{B}(D^{*\pm} \rightarrow D^0 \pi_s^{\pm}) = 0.677 \pm 0.005$

Charm search with $D^{*\pm}(2010) \rightarrow D^0(K^{\mp} + \pi^{\pm}) + \pi_s$

charm ground state to strange state: weak interaction, longer lifetime $\mathcal{B}(D^{*\pm} \to D^0 \pi_s^{\pm}) \times \mathcal{B}(D^0 \to K^{\mp} \pi^{\pm}) = 0.0380 \pm 0.0009$

$$\mathcal{F} \times \mathcal{B} = (0.51 \pm 0.13) \%$$

- all elementary forces relevant for particle physics covered
- small phase space of about $6 \,\mathrm{MeV}$ for slow π^\pm_s limited by mass difference

HERA II

Selection criteria for $D^{*\pm}(2010) \rightarrow D^0(K^{\mp} + \pi^{\pm}) + \pi_s^{\pm}$

mass calculations done with all track combinations and mass assignment

primary vertex tracks mass cuts:

$$\begin{split} 1.80 \, {\rm GeV} &< M(D^0) < 1.92 \, {\rm GeV} \\ 0.143 \, {\rm GeV} &< \Delta M < 0.148 \, {\rm GeV} \\ \Delta M &= M(K^{\mp} \; \pi^{\pm} \; \pi^{\pm}_{s}) - M(K^{\mp} \; \pi^{\pm}) \end{split}$$

$$\begin{array}{l} {\rm DIS \ cuts:} \\ 5 \,{\rm GeV}^2 < Q^2 < 1000 \,{\rm GeV}^2 \\ 0.02 < y < 0.7 \\ D^{*\pm} \ {\rm kinematic \ cuts:} \\ 1.5 \,{\rm GeV} < p_{\rm T}(D^{*\pm}) < 15 \,{\rm GeV} \\ p_{\rm T}({\rm K}) > 0.4 \,{\rm GeV} \\ p_{\rm T}(\pi) > 0.4 \,{\rm GeV} \\ p_{\rm T}(\pi_s) > 0.12 \,{\rm GeV} \\ -1.5 < \eta_{D^{*\pm}} < 1.5 \end{array}$$

 $Q^2 = 918 \,\text{GeV}^2$ y = 0.39 $p_T(D^{*-}) = 10.3 \,\text{GeV}$ $\eta(D^{*-}) = 0.06$ $p_T(K^+) = 1.5 \,\text{GeV}$ $p_T(\pi^-) = 7.9 \,\text{GeV}$ $p_T(\pi_s^-) = 1.1 \,\text{GeV}$

Positron scattering: $e^+ + p \rightarrow D^{*\pm} + X$

- subtraction of correlated errors gives a narrow signal
- invariant mass difference peaks around the rest mass of π_s (139 MeV) plus its kinematic energy
- background subtraction method to get the number of candidates $N_{rec} = N_{sig} - N_{back}$
- luminosity $\mathcal{L} = 40 \, \mathrm{pb}^{-1}$

Electron scattering: $e^- + p \rightarrow D^{*\pm} + X$

• luminosity $\mathcal{L} = 33 \, \mathrm{pb}^{-1} \rightarrow$ only a fraction of the current data

Ratio between $\sigma(e^-p)$ and $\sigma(e^+p)$ cross-sections

- lower limit in Q^2 shifted from $1.5 \,\mathrm{GeV}^2$ to $5 \,\mathrm{GeV}^2$
- HERA I data in Phys. Rev. D69: 012004, 2004 (hep-ex/0308068) given in blue $\mathcal{L}(e^-p) =$ $17 \,\mathrm{pb}^{-1}$; $\mathcal{L}(e^+p) = 65 \,\mathrm{pb}^{-1}$
- HERA II data confirms that the excess in HERA I data was a statistical fluctuation

 \Rightarrow charm is produced equally in e^+p and e^-p collisions

- two/ three barrel layers and four forward wheels
- $20\,\mu{\rm m}$ intrinsic hit resolution
- impact parameter resolution of about $100 \,\mu m$ is required for efficient charm tagging \Rightarrow alignment accuracy of $20 \,\mu m$ needed

MVD alignment

- impact parameter w.r.p. beam-spot in microns vs φ for high momentum tracks p_T > 3 GeV in central region |η| < 1 of good quality min. 4 MVD hits ⇒ natural spread of tracks in interaction region covered
- ³⁵⁰ cosmic alignment in yellow
 - *ep* collision tracks used for alignment in blue
 - good agreement with MC given in red

Decay length significance

- decay length $\vec{L} = \vec{s} \vec{P}$
- projection onto momentum in 2D $L_{xy} = \frac{(\vec{s} - \vec{P}) \cdot \vec{p}(D^0)}{p_T(D^0)}$

• significance
$$s_L = \frac{L}{\sigma_L}$$

• \vec{P} = beam-spot gives higher precision than \vec{P} = primary vertex

More data ...

Decay length significance II

- D^0 s taken from $D^{*\pm}$ s
- wrong-charge background normalized to signal
- shift seen because of decay length $c \tau = 123 \, \mu {
 m m}$
- exponential decay length distribution hidden by resolution effects, what is not a surprise

$D^{\pm} \rightarrow \mathrm{K}^{\mp} + \pi^{\pm} + \pi^{\pm}$ selection criteria

- same DIS cuts as for $D^{*\pm}s$ $p_T(D^{\pm}) > 2.5 \,\text{GeV}$ $p_T(K^{\mp}) > 0.65 \,\text{GeV}$ $p_T(\pi^{\pm}) > 0.45 \,\text{GeV}$
- additional quality cut min. 4
 MVD hits
- hardly any signal visible
- lifetime longer: $c\tau = 314 \,\mu\mathrm{m}$

 $D^{\pm} \rightarrow \mathrm{K}^{\mp} + \pi^{\pm} + \pi^{\pm}$ decay length significance

- negative side mirrored to the left ⇒ enhancement
- signed decay length $L = |\vec{L}| \operatorname{sign}(\vec{L} \cdot \vec{p}_{D^{\pm}})$
- cut $\frac{L}{\sigma(L)} > 3$ is used to enrich the signal

- big improvement
- background reduced by a factor of 30

Summary and outlook

- D^{*±} cross-section ratio: HERA II data confirms that the excess in HERA I data was a statistical fluctuation
- decay length of D^0 s from $D^{*\pm}s$ visible in decay length significance plot and could be used to clean up the signal
- further use of decay length significance for untagged $D^0 {\rm s}$
- decay length significance cut useful to reduce $\frac{s}{\sqrt{b}}$ for D^{\pm} production