

Charm baryons and Charmonium Production in eter collisions at Belle

Belle

KEKB ring ~1km in dia.

H. Kichimi KEK, High Energy Accelerator Research Organization DIS2006, April 20-24, Tsukuba

e-	e+	-	\rightarrow	q	$\bar{\mathbf{q}}$			
	u	u		С	– C			2/3
	d	d		S	Ŝ	b	b	-1/3

$$e^+ e^- \rightarrow c \bar{c}$$

at $E_{cm} \sim 10 \text{ GeV}$

Charm baryon Charmonium (cc̄) production

q

e.

H.Kichimi, DIS2006 April20-24, Tsukuba Japan

q

Excellent performance of KEKB

Belle Detector

Tracking : SVD and CDC $\pi / K / p$: CDC dE/dx, ACC and TOF e / μ : CsI-cal. and RPC+Fe

H.Kichimi, DIS2006 April20-24, Tsukuba Japan

1.5 Tesla field

1. Charm baryons

PDG2004

Spectrum is not known well. Need more studies with larger samples.

$\geq \Xi^-, \Xi_c^-$ and Λ_c^+ mass reconstruction

BEL		Ξ_{c}^{0} a	nd Ξ_c^+				PLB 605, 237 (2005) 140 fb ⁻¹
	Decay	y mode	# of events	mass [N	MeV/c^2]		
	$\Xi_c^0 \rightarrow$	$\Xi^{-}\pi^{+}$	2979 ± 211	$2471.3~\pm$	0.5 ± 0.8		
	$\Xi_c^0 \rightarrow$	$\cdot \Lambda K^- \pi^+$	3268 ± 276	$2470.0~\pm$	0.6 ± 0.7		Vass in various modes
	$\Xi_c^0 \rightarrow$	$\cdot \Lambda K^0_S$	$465\pm~37$	$2472.2~\pm$	0.5 ± 0.5		Branching fractions
	$\Xi_c^0 \rightarrow$	$pK^-K^-\pi^+$	1908 ± 62	$2470.9 \pm$	0.1 ± 0.2		with >x10 larger samples
	$\Xi_c^+ -$	$ \Xi^{-}\pi^{+}\pi^{+}$	3605 ± 279	$2468.6~\pm$	0.4 ± 0.5		
	Ξ_c^+ –	$\rightarrow \Lambda K^{-}\pi^{+}\pi^{+}$	1177 ± 55	2467.6 \pm	0.2 ± 0.5		
	Ξ_c^+ –	$\rightarrow pK^0_SK^0_S$	168 ± 27	$2468.6 \pm$	0.7 ± 0.9		PDG:
	$m_{\equiv 0}$ =	<mark>= (2471.0 ±</mark>	: 0.3(stat⊕s	$(yst)^{+0.2}_{-1.4}$) MeV/c ²	2 2	2471.8 ± 1.4
	$m_{\Xi_c^+}$	<mark>= (2468.1</mark> ±	$0.4(Stat \oplus Sy)$	$(st)^{+0.2}_{-1.4})$	MeV/c ²	2	2466.3 ± 1.4
				syst. e	rr due to mass s	scale bi	<mark>as</mark>
	$m_{\Xi_c^0}$ -	$-m_{\Xi_c^+} = (2$	$2.9 \pm 0.5)$ Me	eV/c ²		5	5.5 ± 1.4
Í	Brand	ching ratios	s		$\frac{\Gamma(\Xi_c^0 \to I)}{\Gamma(\Xi_c^0)}$	$\Lambda K^{-}\pi$	$\frac{(t^+)}{12} = 1.07 \pm 0.12 \pm 0.07,$

$$\frac{\Gamma(\Xi_c^+ \to \Lambda K^- \pi^+ \pi^+)}{\Gamma(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)} = 0.32 \pm 0.03 \pm 0.02,
\frac{\Gamma(\Xi_c^0 \to \Xi^- \pi^+)}{\Gamma(\Xi_c^+ \to E^- \pi^+ \pi^+)} = 0.087 \pm 0.016 \pm 0.014,
\frac{\Gamma(\Xi_c^0 \to \Lambda K_s^0)}{\Gamma(\Xi_c^0 \to \Xi^- \pi^+)} = 0.33 \pm 0.03 \pm 0.03.$$

\sum_{BELLE} (3) Ξ_{c} (2645) mass

Ξ_c 3/2⁺

357 fb⁻¹

Ec(2645) mass	Ξ _c 3/2+

			<u> </u>	liminary
Ξ_c decay mode	# of events	mass $[MeV]$	$/c^{2}$]	
$\Xi_c^+\to \Xi^-\pi^+\pi^+$	566 ± 30	$2643.1 \pm 0.2(stat) =$	$\pm 0.5(syst)$	
$\Xi_c^0\to\Xi^-\pi^+$	554 ± 29	$2644.7 \pm 0.2(stat) =$	$\pm 0.5(syst)$	
$\Xi_c^0\to\Lambda K^-\pi^+$	416 ± 32	$2644.7 \pm 0.3(stat) =$	$\pm 0.6(\mathrm{s}yst)$ – –	PDG:
m _{≡c(2645)} + =	= (2644.7	$\pm 0.4 \pm 0.4$) N	MeV/c ² 264	47.4 ± 2.0
$m_{\equiv_c(2645)^0} =$	= <mark>(2643.1</mark>	$\pm 0.6 \pm 0.4)$ N	MeV/c ² <mark>26</mark> 4	44.5 ± 1.8
		syst. Err ind	cluding mass scale bias	

 $m_{\equiv_c(2645)^+} - m_{\equiv_c(2645)^0} = (1.6 \pm 0.7) \text{ MeV/c}^2 2.9 \pm 2.7$

(4)Observation of $\Xi_{cx}(2980)^+$ and $\Xi_{cx}(3077)$

Initially, searching for the SELEX Ξ_{cc} (3519)⁺ state ($\Lambda_c^+ K^- \pi^+$)

462 fb⁻¹

H.Kichimi, DIS2006 April20-24, Tsukuba Japan

BELLE

BELLE

Search for the SELEX signal

(5) Resonances in D^o p

hep-ex/0603052 287 fb⁻¹ Babar

2. Double charmonium production in e+e- collisions

 Observation of e⁺e⁻ → J/ψ X(3940)
 hep-ex/0507019

 X(3940) → D* D
 357 fb-1

e⁻ e⁺

Recoil Mass

$$M_{\text{recoil}} = \sqrt{(E_{\text{CM}} - E_{J/\psi})^2 - p_{J/\psi}^2}$$

cf. PRL89 (2002) 142001 46 fb⁻¹ PRD80 (2004) 1550(R) 140 fb⁻¹

$\frac{Z(3930) \rightarrow D D \text{ in } \gamma \gamma \text{ fusion} : \chi'_{c2} 2 {}^{3}P_{2}}{\text{Spin determination 0 or 2}}$ $\frac{PRL96, 082003(2006)}{395 \text{ fb}^{-1}}$

Double charmonium production in e+e- collision

Recoil mass M_{recoil} (J/ ψ) distribution

(1) Double charmonium production

H.Kichimi, DIS2006 April20-24, Tsukuba Japan

PRL96, 082003(2006) 395 fb⁻¹

Summary2

Charmonium production in e⁺e⁻ collision

Large cross sections for double charmonium production >> NRQCD prediction : not well described by theory.

(Belle, Babar)

Observation of $e^+e^- \rightarrow J/\psi X(3940)$ $X(3940) \rightarrow D^* \overline{D}$ no evidence in D D and $J/\psi \omega$ $\neq Y(3940)$ in B $\rightarrow K Y(3940), Y(3940) \rightarrow J/\psi \omega$

$$Z(3930) \rightarrow D \overline{D}$$
 in $\gamma\gamma$ fusion : χ'_{c2} 2 ${}^{3}P_{2}$

Published / submitted / preliminary

Backup slides

Charmonium (like) states

states	decay	Mass		process	Ref.
		MeV/c ²	MeV/c ²		
Y(3940)	J/ ψ ω	3943±11	87±22	Β → K ω J/ ψ	Belle(1)
X(3940)	D D*	3936±14	39±26	e⁺e⁻ →J/ψ DD*, J/ψ X	This
Z(3930)	DD	3929±5	29±10	$\gamma\gamma \rightarrow D \overline{D}$	Belle(3)
	χ΄ _{c2} (2 ³ Ρ ₂)				
Y(4260)	J/ ψπ +π -	~4260	~90	e⁺e⁻ → γ _{ISR} J/ψ π⁺ π ⁻	Babar(2)

- 1. Belle: PRL94,182002(2005)
- 2. Babar: PRL95,142001(2005)
- 3. Belle: PRL96, 082003(2006)

Double charmonium production in e+e- collision

Belle : PRL89,142001(2002), PRD70,071102(R)(2004) Babar : PRL92,142002(2004), PRD72,031101(R)(2005)

PRL96, 082003(2006) 395 fb⁻¹

D signal selection in $\gamma\gamma \rightarrow D$ D analysis

Clear D signals

yy **selection**

$$\begin{split} &\gamma\gamma \ \to \ D^0\bar{D}^0, \ D^0 \to K^-\pi^+, \ \bar{D}^0 \to K^+\pi^- \qquad ({\rm N4}), \\ &\gamma\gamma \ \to \ D^0\bar{D}^0, \ D^0 \to K^-\pi^+, \ \bar{D}^0 \to K^+\pi^-\pi^0 \qquad ({\rm N5}), \\ &\gamma\gamma \ \to \ D^0\bar{D}^0, \ D^0 \to K^-\pi^+, \ \bar{D}^0 \to K^+\pi^-\pi^+\pi^- \qquad ({\rm N6}), \\ &\gamma\gamma \ \to \ D^+D^-, \ D^+ \to K^-\pi^+\pi^+, \ D^- \to K^+\pi^-\pi^-({\rm C6}). \end{split}$$

MC : feeddown of $\Lambda_c(2880) \rightarrow \Sigma_c(2455)\pi$ to m($\Lambda_c^+K^-\pi^+$)

MC : feeddown of $\Lambda_c(2765) \rightarrow \Sigma_c(2455)^0 \pi^+$, $\Sigma_c(2455)^0 \rightarrow \Lambda_c^+ \pi^-$

and $\Lambda_c(2765) \rightarrow \Sigma_c(2455)^{++} \pi^-$, $\Sigma_c(2455)^{++} \rightarrow \Lambda_c^+ \pi^+$

International Collaboration: Belle

Aomori U. BINP Chiba U. Chonnam Nat'l U. U. of Cincinnati Ewha Womans U. Frankfurt U. Gyeongsang Nat'l U. U. of Hawaii Hiroshima Tech. IHEP, Beijing IHEP, Moscow IHEP, Vienna

Kanagawa U. KEK Korea U. Krakow Inst. of Nucl. Phys Kyoto U. Kyungpook Nat'l U. EPF Lausanne

Jozef Stefan Inst. / U. of Ljubljana / U. of Maribor U. of Melbourne Nagoya U. Nara Women's U. National Central U. Nat'l Kaoshiung Normal U. National Taiwan U. National United U. Nihon Dental College Niigata U. Osaka U. Osaka City U. Panjab U. Peking U. U. of Pittsburgh Princeton U. Riken Saga U. USTC

Seoul National U. Shinshu U. Sungkyunkwan U. U. of Sydney Tata Institute Toho U. Tohoku U. Tohuku Gakuin U. U. of Tokyo Tokyo Inst. of Tech. Tokyo Metropolitan U. Tokyo U. of Agri. and Tech. Toyama Nat'l College U. of Tsukuba Utkal U. VPL Yonsei U.

13 countries, 57 institutes, ~400 collaborators