Beauty Production with the ZEUS HERA II Data

Oliver Maria Kind - On Behalf of the ZEUS Collaboration -

Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn

XIV International Workshop on Deep Inelastic Scattering KEK – Tsukuba, Japan April 22, 2006

Outline

Introduction

HERA II Running Motivation Beauty Extraction Methods Previous Results

Beauty in Photoproduction

Dijet PhP Event Selection Beauty Extraction Results

Beauty in Deep Inelastic Scattering

Event Selection Control Plots Beauty Extraction by p_{\perp}^{rel} Results

Summary

・ロト ・ 四ト ・ ヨト ・ ヨト

ZEUS and HERA II Running

- HERA II upgrade: large increase of luminosity
- ZEUS micro-vertex detector taking data since 2003 (\rightarrow life-time tag)

HERA IL.eT

Motivation

- Beauty production at HERA is good testing ground for pQCD
- Multiple scales: $m_{\rm b}$, $p_{\perp}^{\rm b}$ and Q^2
- Probe the b contribution to the proton structure function, $F_2^{b\bar{b}}$
- PYTHIA MC: LO + PS (includes flavour excitation diagrams)
- NLO QCD calculations available (FMNR, HVQDIS)

Beauty Extraction Methods

Component of μ momentum transverse to jet axis, $\textit{p}_{\perp}^{\text{rel}}$

 Large for B decays because of large B mass

Signed μ impact parameter, δ

- Symmetrically distributed around zero for light flavours
- Positive tail for beauty and charm due to life-time

Previous Results

Situation:

- ► Most measurements agree with NLO QCD within 2σ
- Overall, NLO tends to somewhat underestimate the data especially towards low p_⊥ → investigate
- Statistics still low

Aim of HERA II:

- Increase statistics \rightarrow single- and double-differential x-sections
- Reduce systematics by complementary measurements (B life-time)

Part I

Beauty in Photoproduction

Dijet PhP + μ Event Selection

2004 e⁺p data:
$$\mathcal{L} = 33 \, \text{pb}^{-1}$$

Photoproduction:

- Veto on scattered e⁺
- ▶ 0.2 < y_{JB} < 0.8

Jet finding:

- k⊥-clustering
- ► N_{jets} ≥ 2
- *p*_⊥ > 7(6) GeV
- |η| < 2.5</p>

Associated µ:

- µ inside jet
- *p*^µ_⊥ > 2.5 GeV
- $-1.6 < \eta^{\mu} < 2.3$
- µ-chambers + central tracking

・ロト ・ 四ト ・ ヨト ・ ヨト

Dijet PhP + µ Event Selection

Events selected: \approx 1800

Signal:

 µ from SL decays of b and c

Background:

 Fake-μ from punch-through and in-flight decays from π, K

Shapes reproduced by PYTHIA 6.2

Beauty Extraction

• Combined fit of $p_{\perp}^{\rm rel}$ and impact parameter, δ

200

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Beauty Extraction

Result:

 $f_{\rm b} = (16.7 \pm 2.6)\%$ $f_{\rm c} = (52 \pm 10)\%$

Remarks:

- PYTHIA 6.2 templates used for b, c and light-flavours
- p^{rel} shape of light-flavour MC corrected by inclusive dijet data
- Beam position measured run-by-run
- Resolution of δ in MC modeled on inclusive data (latest MVD alignment not in)

Results for $e^+p \rightarrow e^{+\prime} + b\bar{b} + X \rightarrow e^{+\prime} + dijet + \mu + X$

Kinematic region:

 $\begin{array}{ll} Q^2 < 1 \, \text{GeV}^2 & 0.2 < y < 0.8 \\ p_{\perp}^{jet} > 7(6) \, \text{GeV} & |\eta^{jet}| < 2.5 \\ p_{\perp}^{\mu} > 2.5 \, \text{GeV} & -1.6 < \eta^{\mu} < 2.3 \end{array}$

Conclusions:

- Agreement with NLO QCD prediction (FMNR)
- Agreement with ZEUS data from HERA I running
 - ▶ p^{rel} only
 - ► ≈ 3 × statistics than '04 analysis

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Part II

Beauty in Deep Inelastic Scattering

Event Selection: $ep \rightarrow e' + b\bar{b} + X \rightarrow e' + jet + \mu + X$

2003/4 ep data:
$$\mathcal{L} = 39 \, \text{pb}^{-1}$$

DIS:

- ► Q² > 4 GeV²
- ► E_{e'} > 10 GeV
- ► y_{el} < 0.7
- ▶ 40 < (E p_z) < 65 GeV</p>

Jet finding:

- ▶ k_⊥-clustering
- \blacktriangleright \geq 1 jet with associated μ
- ► E_⊥ > 5 GeV

► -2.0 < η < 2.5</p>

Associated µ:

- μ inside jet
- ▶ p^µ_⊥ > 1.5 GeV
- μ-chambers + inner tracking

Event Selection: $ep \rightarrow e' + b\bar{b} + X \rightarrow e' + jet + \mu + X$

2003/4 ep data:
$$\mathcal{L} = 39 \, \text{pb}^{-1}$$

DIS:

- ► Q² > 4 GeV²
- ► *E*_{e'} > 10 GeV
- ► y_{el} < 0.7
- 40 < (E − p_z) < 65 GeV

Jet finding:

- ▶ k_⊥-clustering
- \blacktriangleright \geq 1 jet with associated μ
- *E*_⊥ > 5 GeV
- ► -2.0 < η < 2.5</p>

Associated µ:

- μ inside jet
- *p*^µ_⊥ > 1.5 GeV
- μ-chambers + inner tracking

Control Plots

3

Feus

Beauty Extraction by $p_{\perp}^{\rm rel}$

- ► Fit result: $f_b = (21.4 \pm 2.1)$ % i.e. $\gtrsim 1000$ b events/39 pb⁻¹
- K-factor for Beauty LO+PS MC (RAPGAP) of 2.49
- Impact parameter analysis ongoing

・ ロ ト ・ 日 ト ・ ヨ ト ・

Results for $ep \rightarrow e' + b\bar{b} + X \rightarrow e' + jet + \mu + X$

Results for ep \rightarrow e' + bb + X \rightarrow e' + jet + μ + X

Results for ep \rightarrow e' + bb + X \rightarrow e' + jet + μ + X

Summary

PhP analysis:

- 1st B analysis @ZEUS exploiting the MVD
- B extraction by combining p_{\perp}^{rel} and impact parameter
- Results consistent with NLO QCD and HERA I measurements

DIS analysis:

- p_{\perp}^{rel} -analysis of 2003/04 data
- Results consistent with LO+PS MC shapes
- NLO calculations in progress
- Looking forward to $F_2^{b\bar{b}}$ measurement

Part IV

Back-up Slides

Event Selection in Detail

Pre-selection:

- All good events
- Trigger on
 - ► jets in PhP
 - SL µ in PhP
 - ► jets + μ

Vertex:

• $-40 < Z_{vtx} < 4 \, cm$

Tracking:

- ► ≥ 2 vtx tracks
- No. of all tracks ≤ 10 No. of vtx tracks

Veto on e':

- ► *P* > 0.9
- $E_{\rm e} > 5 \, {\rm GeV} \ \land \ y_{\rm el} < 0.9$

EFOs:

▶ 0.2 < y_{JB} < 0.8

Calorimetry:

• $E_{\perp} - 2$ inner rings $\geq 10 \text{ GeV}$

・ロト ・ 四ト ・ ヨト ・ ヨト

• $p_{\perp}/E_{\perp} < 0.5$

Event Selection in Detail

Jets:

- $\triangleright \geq 2$ jets found with k_{\perp} -clustering in E recombination scheme (massive mode, 3211) and
 - $p_{\perp} > 7(6) \text{ GeV } \land |\eta| < 2.5$

μ finding:

- $p_{\perp}^{\mu} > 2.5 \, \text{GeV}$
- ► -1.6 < η < 2.3</p>

1

・ロト ・日下・日下・日下・

Previous Results

・ロト ・ 四ト ・ ヨト ・ ヨト

3

Feus

Set		L
ZEUS 2003/04 data		39 pb ⁻¹
Beauty MC	RAPGAP	990 pb ⁻¹
Charm MC	RAPGAP	990 pb ⁻¹
Light-flavour MC	ARIADNE	990 pb ⁻¹

- MCs comprise LO matrix-elements with DGLAP parton showers
- Shapes are described but not normalisation
- ► Normalisation by fitting the MC p^{rel}-distributions to data

3

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト

Event Selection in Detail

Pre-selection:

- All good events
- No explicit trigger

Vertex:

• $-50 < Z_{\rm vtx} < 50 \, {\rm cm}$

Electron finder:

- ► *P* > 0.9
- ► *E*_e > 10 GeV
- ▶ Q²_{el} > 4 GeV²
- ► y_{el} < 0.7
- ► *y*_{JB} > 0.05

EFOs:

- 40 < (E − p_z) < 65 GeV
- ▶ p/_⊥ < 10 GeV</p>

Calorimetry:

• $E_{\perp} - 10^{\circ} \text{cone} \ge 10 \text{ GeV}$

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨー

Tracking:

► *N*_{trk} > 8

 p_{\perp}^{rel} calculation:

use all jets with
E^{jet}_⊥ > 5 GeV

Event Selection in Detail

$\boldsymbol{\mu}$ finding:

- $p_{\perp}^{\mu} \geq 1.5 \, \text{GeV}$
- GMuon quality > 4
- Forward track muon quality modification
- μ regions
 - ▶ forward: 1.2 < η</p>
 - barrel: −0.9 < η < 1.2</p>
 - rear: −1.6 < η < −0.9</p>
- HAC2 (rear) > 0.3 GeV and no MV
- HAC2 (forward) > 0.4 GeV

Jets:

► ≥ 1 jet found with k_{\perp} -clustering in *E* recombination scheme (massive mode, 3211), w/o DIS electron EFO and

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

- ► -2 < η < 2.5</p>
- *E*^{lab}_⊥ > 5 GeV
- ▶ p_{jet} p_µ > 0.7 GeV anti-isolation

-2

μ-Efficiency Corrections

- µ-efficiencies differences between data and MC
- Correction factors obtained by independend *J*/ψ, Bethe-Heitler data-sets
- Binned in p_{\perp}^{μ} and η^{μ}
- Efficiencies/inefficienies combined for all µ-detectors
- MC μ weighted with combined correction factors
- Significant improvement of μ description
- ► Half of the correction assigned as syst. error (±10%)

・ロト ・日下・日下・日下・

Beauty in PhP Beauty in DIS Data Sets Event Selection µ-Efficiencies Prev. Results

Previous Results of Beauty in DIS

-1

200

ヘロト 人間 トイヨト イヨト

Previous Results of Beauty in DIS

3

Eus

Previous Results of Beauty in DIS

23/23

Eus

200

Oliver Maria Kind