D-meson production in the GM-VFN scheme

Bernd Kniehl (Hamburg University) kniehl@desy.de in collaboration with G. Kramer, I. Schienbein, and H. Spiesberger DIS 2006, Tsukuba, Japan, 20–25 April 2006

OUTLINE

- 2 HEAVY FLAVOUR SCHEMES
 - Fixed Order Perturbation Theory (FFNS)
 - Massless Variable Flavour Number Scheme (ZM-VFNS)
 - Massive Variable Flavour Number Scheme (GM-VFNS)

HARD SCATTERING COEFFICIENTS WITH HEAVY-QUARK MASSES

- Massless Limit
- Mass Factorization

4 NUMERICAL RESULTS

- Fragmentation Functions
- Hadroproduction
- Electroproduction

5 SUMMARY

OVERVIEW

Subject of this talk:

- One-particle inclusive production of heavy hadrons $H = D, B, \Lambda_c, \ldots$
- General-Mass Variable Flavour Number Scheme (GM-VFNS):
 - Collinear logarithms of the heavy-quark mass $\ln \mu / m_h$ are subtracted and resummed
 - Finite non-logarithmic m_h/Q terms are kept in the hard part/taken into account
 - Scheme guided by the factorization theorem of Collins with heavy quarks

Ongoing effort to compute all relevant processes in the GM-VFNS at NLO:

• Available:

• $\gamma + \gamma \rightarrow D^{\star +} + X$: direct process	[3]
• $\gamma + \gamma \rightarrow D^{\star +} + X$: single-resolved process	[4]
• $\gamma + p \rightarrow D^{\star +} + X$: direct process	[5]
$\blacktriangleright p + \bar{p} \rightarrow (D^0, D^{\star +}, D^+, D^+_s, \Lambda^+_c) + X$	[1,6]

[1] B.K.,Kramer,Schienbein,Spiesberger, PRD71(2005)014018; EPJC41(2005)199 [2] J. Collins, PRD58(1998)094002

- [3] Kramer, Spiesberger, EPJC22(2001)289; [4] EPJC28(2003)495; [5] EPJC38(2004)309
- [6] B.K., Kramer, Schienbein, Spiesberger, PRL96 (2006) 012001

B.A. Kniehl (Hamburg University)

D-meson production at NLO

[1]

[2]

OVERVIEW -CONTINUED-

Input for the computation: Fragmentation Functions (FFs) into heavy hadrons H

- FFs from fits to e⁺e⁻ data from LEP (OPAL) directly in x-space
- Use new fits with initial scale $\mu_0 = m_h$ (instead of $\mu_0 = 2m_h$) \rightarrow consistency with PDFs

Work in progress:

 Extraction of FFs in the GM-VFNS (→ include low-energy data) T. Kneesch, Univ. Hamburg

Goal:

Test pQCD formalism/universality of FFs in as many processes as possible

MOTIVATION Why heavy flavour production?

Heavy Quarks: h = c, b, t

... are interesting:

• $m_h \gg \Lambda_{\rm QCD} \Rightarrow \alpha_s(m_h^2) \propto \ln^{-1}(\frac{m_h^2}{\Lambda_{\rm QCD}^2}) \ll 1$ (asymptotic freedom)

m_h sets hard scale; acts as long distance cut-off

\Rightarrow Perturbation Theory (PQCD) Applicable!

Heavy quark production processes are:

- Fundamental elementary particle processes
- Important background to New Physics searches at the LHC

MOTIVATION Heavy Quarks and PQCD

Fixed Order Perturbation Theory:

 finite collinear logs ln Q/m_c arise → can be kept in hard part Of course need exp. Input for u, d, s, g PDFs at scale Q₀⁽³⁾

Variable Flavour Number Scheme (VFNS):

• often large ratios of scales involved: multi-scale problems For $Q \gg m_c$: write $\ln Q/m_c = \ln Q/\mu + \ln \mu/m_c$, subtract $\ln \mu/m_c$ and resum $\ln \mu/m_c$ by introducing charm PDF at $Q_0^{(4)} \simeq m_c$ using a perturbative boundary condition

$$d\sigma = \sum_{i,j,k} f_i^A(x_1) \otimes f_j^B(x_2) \otimes d\hat{\sigma}(ij \to kX) \otimes D_k^H(z)$$

Sum over all possible subprocesses $i + j \rightarrow k + X$

- $d\hat{\sigma}(\mu_F, \mu'_F, \alpha_s(\mu_R), [\frac{m_h}{\rho_T}])$: hard scattering cross sections, perturbatively computable, free of long-distance physics $\rightarrow m_h$ can be kept
- PDFs $f_j^A(x_1, \mu_F)$, $f_j^B(x_2, \mu_F)$: universal, non-perturbative input
 - Direct Photon: $i, j = \gamma$, $f_{\gamma}^{\gamma}(x, \mu_F) = \delta(1 x)$
 - Resolved Photon/Proton: $i, j = g, q, \dots$ [q = u, d, s]
- Fragmentation functions $D_k^H(z, [\mu'_F])$: universal, non-perturbative input k = h, ...
- Error:
 - ▶ light hadrons: $\mathcal{O}((\Lambda/p_T)^p)$ with p_T hard scale, Λ hadronic scale, p = 1, 2
 - heavy hadrons: $\mathcal{O}((m_h/p_T)^p)$ if m_h neglected in d ∂

$$d\sigma = \sum_{i,j,k} f_i^A(x_1) \otimes f_j^B(x_2) \otimes d\hat{\sigma}(ij \to kX) \otimes D_k^H(z)$$

Sum over all possible subprocesses $i + j \rightarrow k + X$

- $d\hat{\sigma}(\mu_F, \mu'_F, \alpha_s(\mu_R), [\frac{m_h}{\rho_T}])$: hard scattering cross sections, perturbatively computable, free of long-distance physics $\rightarrow m_h$ can be kept
- PDFs $f_i^A(x_1, \mu_F)$, $f_i^B(x_2, \mu_F)$: universal, non-perturbative input
 - Direct Photon: $i, j = \gamma$, $f_{\gamma}^{\gamma}(x, \mu_F) = \delta(1 x)$
 - Resolved Photon/Proton: $i, j = g, q, \dots$ [q = u, d, s]
- Fragmentation functions $D_k^H(z, [\mu'_F])$: universal, non-perturbative input k = h, ...
- Error:
 - ▶ light hadrons: $\mathcal{O}((\Lambda/p_T)^p)$ with p_T hard scale, Λ hadronic scale, p = 1, 2
 - heavy hadrons: $\mathcal{O}((m_h/p_T)^p)$ if m_h neglected in $d\partial$

$$d\sigma = \sum_{i,j,k} f_i^A(x_1) \otimes f_j^B(x_2) \otimes d\hat{\sigma}(ij \to kX) \otimes D_k^H(z)$$

Sum over all possible subprocesses $i + j \rightarrow k + X$

- $d\hat{\sigma}(\mu_F, \mu'_F, \alpha_s(\mu_R), [\frac{m_h}{p_T}])$: hard scattering cross sections, perturbatively computable, free of long-distance physics $\rightarrow m_h$ can be kept
- PDFs f^A_i(x₁, μ_F), f^B_i(x₂, μ_F): universal, non-perturbative input
 - Direct Photon: $i, j = \gamma$, $f_{\gamma}^{\gamma}(x, \mu_F) = \delta(1 x)$
 - Resolved Photon/Proton: i, j = g, q, ... [q = u, d, s]
- Fragmentation functions $D_k^H(z, [\mu'_F])$: universal, non-perturbative input k = h, ...
- Error:
 - ▶ light hadrons: $\mathcal{O}((\Lambda/p_T)^p)$ with p_T hard scale, Λ hadronic scale, p = 1, 2
 - heavy hadrons: $\mathcal{O}((m_h/p_T)^p)$ if m_h neglected in $d\hat{\sigma}$

$$d\sigma = \sum_{i,j,k} f_i^A(x_1) \otimes f_j^B(x_2) \otimes d\hat{\sigma}(ij \to kX) \otimes D_k^H(z)$$

Sum over all possible subprocesses $i + j \rightarrow k + X$

- $d\hat{\sigma}(\mu_F, \mu'_F, \alpha_s(\mu_R), [\frac{m_h}{p_T}])$: hard scattering cross sections, perturbatively computable, free of long-distance physics $\rightarrow m_h$ can be kept
- PDFs f^A_i(x₁, μ_F), f^B_i(x₂, μ_F): universal, non-perturbative input
 - Direct Photon: $i, j = \gamma$, $f_{\gamma}^{\gamma}(x, \mu_F) = \delta(1 x)$
 - Resolved Photon/Proton: i, j = g, q, ... [q = u, d, s]
- Fragmentation functions D^H_k(z, [μ'_F]): universal, non-perturbative input k = h,...
- Error:
 - ▶ light hadrons: $\mathcal{O}((\Lambda/p_T)^p)$ with p_T hard scale, Λ hadronic scale, p = 1, 2
 - heavy hadrons: $\mathcal{O}((m_h/p_T)^p)$ if m_h neglected in d ∂

Theoretical Basis: Factorization Formulae for $A + B \rightarrow H + X$

$$d\sigma = \sum_{i,j,k} f_i^A(x_1) \otimes f_j^B(x_2) \otimes d\hat{\sigma}(ij \to kX) \otimes D_k^H(z)$$

Sum over all possible subprocesses $i + j \rightarrow k + X$

- $d\hat{\sigma}(\mu_F, \mu'_F, \alpha_s(\mu_R), [\frac{m_h}{p_T}])$: hard scattering cross sections, perturbatively computable, free of long-distance physics $\rightarrow m_h$ can be kept
- PDFs f^A_i(x₁, μ_F), f^B_i(x₂, μ_F): universal, non-perturbative input
 - Direct Photon: $i, j = \gamma$, $f_{\gamma}^{\gamma}(x, \mu_F) = \delta(1 x)$
 - Resolved Photon/Proton: i, j = g, q, ... [q = u, d, s]
- Fragmentation functions D^H_k(z, [μ'_F]): universal, non-perturbative input k = h,...
- Error:
 - ▶ light hadrons: $O((\Lambda/p_T)^p)$ with p_T hard scale, Λ hadronic scale, p = 1, 2
 - ▶ heavy hadrons: $O((m_h/p_T)^p)$ if m_h neglected in $d\hat{\sigma}$

Theoretical Basis: Factorization Formulae for $A + B \rightarrow H + X$

$$d\sigma = \sum_{i,j,k} f_i^A(x_1) \otimes f_j^B(x_2) \otimes d\hat{\sigma}(ij \to kX) \otimes D_k^H(z)$$

Sum over all possible subprocesses $i + j \rightarrow k + X$

- $d\hat{\sigma}(\mu_F, \mu'_F, \alpha_s(\mu_R), [\frac{m_h}{\rho_T}])$: hard scattering cross sections, perturbatively computable, free of long-distance physics $\rightarrow m_h$ can be kept
- PDFs f^A_i(x₁, μ_F), f^B_i(x₂, μ_F): universal, non-perturbative input
 - Direct Photon: $i, j = \gamma$, $f_{\gamma}^{\gamma}(x, \mu_F) = \delta(1 x)$
 - Resolved Photon/Proton: i, j = g, q, ... [q = u, d, s]
- Fragmentation functions D^H_k(z, [μ'_F]): universal, non-perturbative input k = h,...
- Error:
 - ▶ light hadrons: $O((\Lambda/p_T)^p)$ with p_T hard scale, Λ hadronic scale, p = 1, 2
 - heavy hadrons: $\mathcal{O}((m_h/p_T)^p)$ if m_h neglected in $d\hat{\sigma}$

Two basic approaches:

- Fixed Order Perturbation Theory (FFNS)
- Parton Model (ZM-VFNS)

Interpolating scheme combining the good features:

• Parton Model with quark masses (GM-VFNS, ACOT)

Glossary:

- ZM: Zero Mass
- GM: General Mass
- VFNS: Variable Flavour Number Scheme
- FFNS: Fixed Flavour Number Scheme

FIXED FLAVOUR NUMBER SCHEME (FFNS)

- $m_c \neq 0$, $n_f = 3$ fixed
- Partons: g, u, d, s [NO charm parton; Charm (only) in final state]
- collinear logarithms $\ln \frac{s}{m^2}$ finite
 - \rightarrow No factorization; no conceptual necessity for FFs
 - \rightarrow fixed order perturbation theory; no resummation
- Usually c treated in on-shell scheme (MSm)

Pro and Contra:

 $\left(\frac{m_c}{p_T}\right)^n$ terms included; correct threshold suppression

 \Rightarrow valid for $0 \le p_T^2 \lesssim m_c^2 \mid \Rightarrow \sigma_{
m tot}$ calculable

- fixed order logarithms $\ln \frac{p_T^2}{m_c^2}$ large for $p_T^2 \gg m_c^2$; resummation of these large logarithms necessary

- \Rightarrow breaks down for $p_T^2 \gg m_c^2$
- non-perturbative function $D_c^H(z)$, describing the hadronisation $c \to H$ needed to match data;

 \rightarrow not based on factorization theorem (no AP evolution)

 \rightarrow universal?

B.A. Kniehl (Hamburg University)

FIXED FLAVOUR NUMBER SCHEME (FFNS)

- $m_c \neq 0$, $n_f = 3$ fixed
- Partons: g, u, d, s [NO charm parton; Charm (only) in final state]
- collinear logarithms $\ln \frac{s}{m^2}$ finite
 - \rightarrow No factorization; no conceptual necessity for FFs
 - \rightarrow fixed order perturbation theory; no resummation
- Usually c treated in on-shell scheme (MSm)

Pro and Contra:

- + $\left(\frac{m_c}{p_T}\right)^n$ terms included; correct threshold suppression
 - \Rightarrow valid for $0 \le p_T^2 \lesssim m_c^2$ $\Rightarrow \sigma_{\rm tot}$ calculable
- fixed order logarithms $\ln \frac{p_T^2}{m_c^2}$ large for $p_T^2 \gg m_c^2$; resummation of these large logarithms necessary
 - \Rightarrow breaks down for $p_T^2 \gg m_c^2$
- non-perturbative function $D_c^H(z)$, describing the hadronisation $c \to H$ needed to match data;
 - \rightarrow not based on factorization theorem (no AP evolution)
 - \rightarrow universal?

- $m_c = 0 \rightarrow$ 'Zero Mass'
- Number of active partons depends on scale $\mu_F \rightarrow$ 'VFNS'
 - µ_F < m_c: n_f = 3, Partons: g, u, d, s
 - $m_c \le \mu_F < m_b$: $n_f = 4$, Partons: g, u, d, s, c
 - $m_b \leq \mu_F$: $n_f = 5$, Partons: g, u, d, s, c, b

• Matching conditions at transition scale $Q_0 = m_c$ (similar at m_b): $n_f = 3 \rightarrow n_f = 4$

 $\left. \begin{array}{c} \alpha_{s}^{(3)} \to \alpha_{s}^{(4)} = \alpha_{s}^{(3)} + \mathcal{O}(\alpha_{s}^{3}) \\ f_{i}^{(3)} \to f_{i}^{(4)} = f_{i}^{(3)} + \mathcal{O}(\alpha_{s}^{3}) \end{array} \right\} @ \mathsf{Q}_{0} = \mathit{m_{c}}$

$$f_c^{(4)}(x, Q_0^2 = m_c^2) = 0$$
 pert. b.c.

Collinear divergences related to c lines factorized into non-perturbative PDFs and FFs

Pro and Contra:

- + large collinear logarithms $\ln \frac{\mu^2}{m_c^2}$ resummed in evolved $f_c(x, \mu^2)$ and $D_c^{D^*}(x, \mu^2)$ to LL and NLL accuracy
 - \Rightarrow good for large $\mu^2 \simeq p_T^2 \gg m_c^2$
- + Universality of PDFs and FFs guaranteed by factorization theorem \rightarrow predictive power, global data analysis
- $\left(\frac{m_c}{n_T}\right)^n$ terms neglected in the hard part

breaks down for $p_T^2 \lesssim m_c^2 \Rightarrow \text{No } \sigma$

- $m_c = 0 \rightarrow$ 'Zero Mass'
- Number of active partons depends on scale $\mu_F \rightarrow \text{'VFNS'}$
 - µ_F < m_c: n_f = 3, Partons: g, u, d, s
 - $m_c \le \mu_F < m_b$: $n_f = 4$, Partons: g, u, d, s, c
 - $m_b \le \mu_F$: $n_f = 5$, Partons: g, u, d, s, c, b

• Matching conditions at transition scale $Q_0 = m_c$ (similar at m_b): $n_f = 3 \rightarrow n_f = 4$

$$\begin{array}{c} \alpha_s^{(3)} \to \alpha_s^{(4)} = \alpha_s^{(3)} + \mathcal{O}(\alpha_s^3) \\ f_i^{(3)} \to f_i^{(4)} = f_i^{(3)} + \mathcal{O}(\alpha_s^2) \end{array} \right\} @ \ \mathsf{Q}_0 = m_c \\ \end{array}$$

$$f_c^{(4)}(x, Q_0^2 = m_c^2) = 0$$
 pert. b.c.

Collinear divergences related to c lines factorized into non-perturbative PDFs and FFs

Pro and Contra:

+ large collinear logarithms $\ln \frac{\mu^2}{m_c^2}$ resummed in evolved $f_c(x, \mu^2)$ and $D_c^{D^*}(x, \mu^2)$ to LL and NLL accuracy

$$\Rightarrow$$
 good for large $\mu^2 \simeq p_T^2 \gg m_c^2$

- $+\,$ Universality of PDFs and FFs guaranteed by factorization theorem \rightarrow predictive power, global data analysis
- $(\frac{m_c}{p_{\tau}})^n$ terms neglected in the hard part

$$\Rightarrow$$
 breaks down for $p_T^2 \lesssim m_c^2$ \Rightarrow No $\sigma_{\rm to}$

MASSIVE VFNS (GM-VFNS)

- VFNS with $m_c \neq 0$
- Partons: g, u, d, s, c (\exists charm parton: $f_c \neq 0$)
- collinear ln $\frac{\mu^2}{m_c^2}$ terms: subtracted from hard part (avoid double counting!) and resummed by AP evolution equations ($\rightarrow f_c \neq 0$)
- $D_c^{D^*}(z, {\mu'_F}^2)$ evolved

Pro and Contra:

- technically more involved:
 - calculation with $m_c \neq 0$
 - Subtraction of collinear parts ↔ 'IR-safe' hard parts Mass factorization with massive regularization
 - ▶ kinematics: factorization with massive partons \rightarrow 'ACOT- χ ' in DIS
- + large collinear logarithms $\ln \frac{\mu^2}{m^2}$ resummed in evolved $f_c(x, \mu^2)$ and $D_c^{D^*}(x, \mu^2)$
- + $\left(\frac{m_c}{p_{\tau}}\right)^n$ included

 $\Rightarrow \mid$ good for all p_T : $0 \le p_T^2 \lesssim m_c^2 \; {
m and} \; p_T^2 \gg m_c^2$

MASSIVE VFNS (GM-VFNS)

- VFNS with $m_c \neq 0$
- Partons: g, u, d, s, c (\exists charm parton: $f_c \neq 0$)
- collinear ln $\frac{\mu^2}{m_c^2}$ terms: subtracted from hard part (avoid double counting!) and resummed by AP evolution equations ($\rightarrow f_c \neq 0$)
- $D_c^{D^{\star}}(z, {\mu_F'}^2)$ evolved

Pro and Contra:

- technically more involved:
 - calculation with $m_c \neq 0$
 - Subtraction of collinear parts ↔ 'IR-safe' hard parts Mass factorization with massive regularization
 - ▶ kinematics: factorization with massive partons \rightarrow 'ACOT- χ ' in DIS
- + large collinear logarithms $\ln \frac{\mu^2}{m^2}$ resummed in evolved $f_c(x, \mu^2)$ and $D_c^{D^*}(x, \mu^2)$
- + $\left(\frac{m_c}{p_T}\right)^n$ included

 $\Rightarrow \text{ good for all } p_T: 0 \le p_T^2 \lesssim m_c^2 \text{ and } p_T^2 \gg m_c^2$

Two ways to derive them:

- Massless limit of fixed order calculation
- Mass factorization with massive regularization

Factorization Formula:

$$d\sigma(p\bar{p} \to D^*X) = \sum_{i,j,k} \int dx_1 \, dx_2 \, dz \, f_i^p(x_1) \, f_j^{\bar{p}}(x_2) \times d\hat{\sigma}(ij \to kX) \, D_k^{D^*}(z) + \mathcal{O}(\alpha_s^{n+1}, (\frac{\Lambda}{Q})^p)$$

Q: hard scale, p = 1, 2

- d
 *d
 ^φ_F*, μ'_F, α_s(μ_R), m_h/p_τ): hard scattering cross sections
 free of long-distance physics → m_h kept
- PDFs $f_i^p(x_1, \mu_F), f_i^{\bar{p}}(x_2, \mu_F)$: $i, j = g, q, c \quad [q = u, d, s]$
- FFs $D_k^{D^\star}(z,\mu_F')$: k=g,q,c

 \Rightarrow need short distance coefficients including heavy quark masses

[1] J. Collins, 'Hard-scattering factorization with heavy quarks: A general treatment', PRD58(1998)094002

LIST OF SUBPROCESSES: GM-VFNS

Only light lines	leavy quark initiated ($m_Q = 0$)	Mass effects: $m_Q \neq 0$
	1 -	$\bigcirc gg \to QX$
2 $gg \rightarrow gX$	2 -	2 -
$\bigcirc qg \to gX$	3 $Qg \rightarrow gX$	3 -
		(1) -
$\bigcirc q\bar{q} \to gX$	$\bigcirc Q\bar{Q} \to gX$	(3) -
$\bigcirc q\bar{q} \to qX$	$\bigcirc Q\bar{Q} \to QX$	() -
$\bigcirc qg \to \bar{q}X$	$\bigcirc Qg \to \bar{Q}X$	0 -
$\bigcirc qg \to \bar{q}'X$	$\bigcirc Qg \to \bar{q}X$	$\bigcirc qg \to \bar{Q}X$
$\bigcirc qg \to q'X$	$\bigcirc Qg \to qX$	$\bigcirc qg \to QX$
$\bigcirc qq \rightarrow gX$	$\bigcirc QQ \to gX$	10 -
	$\bigcirc QQ \to QX$	0 -
	$\textcircled{0} Q\bar{Q} \rightarrow qX$	$\textcircled{0}$ $qar{q} ightarrow Q X$
	() $Q\bar{q} ightarrow gX, q\bar{Q} ightarrow gX$	1 3 -
	$ \ {\bf @} \ Q\bar{q} \rightarrow QX, q\bar{Q} \rightarrow qX $	1
$\textbf{I} gq' \to gX$	$\textbf{IS} \ Qq \to gX, qQ \to gX$	(15) -
		16 -
B.A. Kniehl (Hamburg University)	D-meson production at NLO	DIS 2006

ADOPTED PROCEDURE

• Calculate $m \rightarrow 0$ limit of <u>massive</u> 3-FFNS calculation (at partonic level) Only keep *m* as regulator in $\ln \frac{m^2}{s}$

Partonic subprocesses in 3-FFNS:

- Leading Order (LO):
 - 1. $gg \rightarrow c\bar{c}$ 2. $q\bar{q} \rightarrow c\bar{c}$ (q = u, d, s)
- Next-To-Leading Order (NLO):
 - 1. $gg \rightarrow c\bar{c}g$
 - 2. $q\bar{q} \rightarrow c\bar{c}g$

3.
$$gq \rightarrow c\bar{c}c$$

Limiting procedure non-trivial:

- Map from PS-slicing to Subtraction method
- care needed to recover $\delta(1-w)$, $(\frac{1}{1-w})_+$, $(\frac{\ln(1-w)}{1-w})_+$

Checks:

- Compare Abelian parts with results in [2]
- Numerical tests

[1] Bojak, Stratmann, PRD67(2003)034010; FORTRAN code provided by I. Bojak

[2] Kramer, Spiesberger, EPJC22(2001)289; EPJC28(2003)495

B.A. Kniehl (Hamburg University)

D-meson production at NLO

New@NLO

[1]

• Compare $m \rightarrow 0$ limit of massive calculation with massless $\overline{\text{MS}}$ calculation

$$\lim_{m\to 0} \mathrm{d}\sigma(m) = \mathrm{d}\hat{\sigma}(\overline{\mathrm{MS}}) + \Delta \mathrm{d}\sigma$$

 \Rightarrow Subtraction terms

$$\mathrm{d}\sigma_{\mathrm{SUB}} \equiv \Delta \mathrm{d}\sigma = \lim_{m \to 0} \mathrm{d}\sigma(m) - \mathrm{d}\hat{\sigma}(\overline{\mathrm{MS}})$$

Subtract dσ_{SUB} from massive partonic cross section while keeping mass terms

 $d\hat{\sigma}(m) = d\sigma(m) - d\sigma_{SUB}$

 $\rightarrow d\hat{\sigma}(m)$ short distance coefficient including m

 \rightarrow allows to use PDFs and FFs with $\overline{\mathrm{MS}}$ factorization \oplus massive short dist. cross sections

Treat contributions with <u>charm in the initial state</u> with m_c = 0;
 → scheme choice of practical importance; tiny effect in DIS

[2]

[1] Aversa, Chiappetta, Greco, Guillet, NPB327(1989)105 [2] Kretzer, Schienbein, PRD58(1998)094035

B.A. Kniehl (Hamburg University)

• Compare $m \rightarrow 0$ limit of massive calculation with massless $\overline{\text{MS}}$ calculation

$$\lim_{m\to 0} \mathrm{d}\sigma(m) = \mathrm{d}\hat{\sigma}(\overline{\mathrm{MS}}) + \Delta \mathrm{d}\sigma$$

 \Rightarrow Subtraction terms

$$\mathrm{d}\sigma_{\mathrm{SUB}} \equiv \Delta \mathrm{d}\sigma = \lim_{m \to 0} \mathrm{d}\sigma(m) - \mathrm{d}\hat{\sigma}(\overline{\mathrm{MS}})$$

Subtract dσ_{SUB} from massive partonic cross section while keeping mass terms

 $\mathrm{d}\hat{\sigma}(m) = \mathrm{d}\sigma(m) - \mathrm{d}\sigma_{\mathrm{SUB}}$

 $\rightarrow d\hat{\sigma}(m)$ short distance coefficient including m

 \rightarrow allows to use PDFs and FFs with $\overline{\rm MS}$ factorization \oplus massive short dist. cross sections

Treat contributions with <u>charm in the initial state</u> with m_c = 0;
 → scheme choice of practical importance; tiny effect in DIS

[2]

[1] Aversa, Chiappetta, Greco, Guillet, NPB327(1989)105 [2] Kretzer, Schienbein, PRD58(1998)094035

B.A. Kniehl (Hamburg University)

• Compare $m \rightarrow 0$ limit of massive calculation with massless $\overline{\text{MS}}$ calculation

$$\lim_{m\to 0} \mathrm{d}\sigma(m) = \mathrm{d}\hat{\sigma}(\overline{\mathrm{MS}}) + \Delta \mathrm{d}\sigma$$

 \Rightarrow Subtraction terms

$$\mathrm{d}\sigma_{\mathrm{SUB}} \equiv \Delta \mathrm{d}\sigma = \lim_{m \to 0} \mathrm{d}\sigma(m) - \mathrm{d}\hat{\sigma}(\overline{\mathrm{MS}})$$

Subtract dσ_{SUB} from massive partonic cross section while keeping mass terms

 $\mathrm{d}\hat{\sigma}(m) = \mathrm{d}\sigma(m) - \mathrm{d}\sigma_{\mathrm{SUB}}$

 $\rightarrow d\hat{\sigma}(m)$ short distance coefficient including m

 \rightarrow allows to use PDFs and FFs with $\overline{\rm MS}$ factorization \oplus massive short dist. cross sections

Treat contributions with <u>charm in the initial state</u> with m_c = 0;
 → scheme choice of practical importance; tiny effect in DIS

[2]

Aversa, Chiappetta, Greco, Guillet, NPB327(1989)105
 Kretzer, Schienbein, PRD58(1998)094035

B.A. Kniehl (Hamburg University)

SUBTRACTION TERMS VIA $\overline{\text{MS}}$ mass factorization: $a(k_1)b(k_2) \rightarrow Q(p_1)X$ [1]

$$\begin{array}{ll} \mbox{Fig. (a):} & d\sigma^{\rm sub}(ab \to QX) &= \int_0^1 dx_1 \ f_{a \to i}^{(1)}(\textbf{x}_1, \mu_F^2) \ d\hat{\sigma}^{(0)}(ib \to QX)[\textbf{x}_1\textbf{k}_1, \textbf{k}_2, p_1] \\ & \equiv \ f_{a \to i}^{(1)}(x_1) \otimes d\hat{\sigma}^{(0)}(ib \to QX) \end{array}$$

$$\begin{array}{ll} \underline{\text{Fig. (b):}} & d\sigma^{\text{sub}}(ab \to QX) &= \int_{0}^{1} dx_{2} \, f_{b \to j}^{(1)}(x_{2}, \mu_{F}^{2}) \, d\hat{\sigma}^{(0)}(aj \to QX)[k_{1}, x_{2}k_{2}, p_{1}] \\ &\equiv f_{b \to j}^{(1)}(x_{2}) \otimes d\hat{\sigma}^{(0)}(aj \to QX) \end{array}$$

 $\begin{array}{ll} \underline{\mathsf{Fig.}\ (\mathsf{c}):} & \mathsf{d}\sigma^{\mathrm{sub}}(ab \to \mathsf{Q}X) & = & \int_0^1 \mathsf{d}z \, \mathsf{d}\hat{\sigma}^{(0)}(ab \to kX)[k_1, k_2, \mathbf{z}^{-1}\boldsymbol{p}_1] \, d_{k \to \mathbf{Q}}^{(1)}(z, {\mu_F'}^2) \\ & \equiv & \mathsf{d}\hat{\sigma}^{(0)}(ab \to kX) \otimes d_{k \to \mathbf{Q}}^{(1)}(z) \end{array}$

[1] B.K., Kramer, Schienbein, Spiesberger, EPJC41(2005)199

B.A. Kniehl (Hamburg University)

SUBTRACTION TERMS VIA $\overline{\text{MS}}$ mass factorization: Partonic PDFs and FFs

1. initial state:

$$\begin{split} f_{g \to Q}^{(1)}(x,\mu^2) &= \frac{\alpha_s(\mu)}{2\pi} P_{g \to q}^{(0)}(x) \ln \frac{\mu^2}{m^2} \\ f_{Q \to Q}^{(1)}(x,\mu^2) &= \frac{\alpha_s(\mu)}{2\pi} C_F \big[\frac{1+z^2}{1-z} (\ln \frac{\mu^2}{m^2} - 2\ln(1-z) - 1) \big]_+ \qquad [2] \\ f_{g \to g}^{(1)}(x,\mu^2) &= -\frac{\alpha_s(\mu)}{2\pi} \frac{1}{3} \ln \frac{\mu^2}{m^2} \delta(1-x) \end{split}$$

2. final state:

$$d_{g \to Q}^{(1)}(z,\mu^2) = \frac{\alpha_s(\mu)}{2\pi} P_{g \to q}^{(0)}(z) \ln \frac{\mu^2}{m^2}$$

$$d_{Q \to Q}^{(1)}(z,\mu^2) = C_F \frac{\alpha_s(\mu)}{2\pi} \left[\frac{1+z^2}{1-z} (\ln \frac{\mu^2}{m^2} - 2\ln(1-z) - 1) \right]_+ \qquad [1,2,3]$$

- Other distributions are zero to this order in α_s
- Analogous for photon splitting: $g \rightarrow \gamma$, $\alpha_s \rightarrow \alpha$, color factors

[1] Mele, Nason, NPB361(1991)626; Ma, NPB506(1997)329 [$\gamma^* \rightarrow c\bar{c}g$] [2] Kretzer, Schienbein, PRD58(1998)094035;D59(1999)054004 [$c\gamma^* \rightarrow cg$] [3] Melnikov, Mitov, PRD70(2004)034027; Mitov, PRD71(2005)054021 [$\mathcal{O}(\alpha_8^2)$]

Graphical representation of subtraction terms for $q\bar{q} \rightarrow Q\bar{Q}g$ and $gq \rightarrow Q\bar{Q}q$

$$\frac{d\hat{\sigma}^{(0)}(q\bar{q} \rightarrow Q\bar{Q}) \otimes d^{(1)}_{Q \rightarrow Q}(z):}{d\hat{\sigma}^{(0)}(q\bar{q} \rightarrow gg) \otimes d^{(1)}_{g \rightarrow Q}(z):} \xrightarrow{\tau_{0} \sigma_{0} \sigma_{0} \sigma_{0}} \xrightarrow{\tau_{0} \sigma_{0} \sigma_{0} \sigma_{0}} \xrightarrow{\tau_{0} \sigma_{0} \sigma_{0} \sigma_{0}} \xrightarrow{\tau_{0} \sigma_{0}} \xrightarrow{\tau_{0} \sigma_{0} \sigma_{0}} \xrightarrow{\tau_{0} \sigma_{0} \sigma_{0}} \xrightarrow{\tau_{0} \sigma_{0} \sigma_{0}} \xrightarrow{\tau_{0} \sigma_{0}} \xrightarrow{\tau_{0} \sigma_{0} \sigma_{0}} \xrightarrow{\tau_{0} \sigma_{0} \sigma_{0}} \xrightarrow{\tau_{0} \sigma_{0} \sigma_{0}} \xrightarrow{\tau_{0} \sigma_{0} \sigma_{0}} \xrightarrow{\tau_{0} \sigma_{0}} \xrightarrow{\tau_{0} \sigma_{0} \sigma_{0}} \xrightarrow{\tau_{0} \sigma_{0}$$

$$rac{\mathsf{d}\hat{\sigma}^{(0)}(gq
ightarrow gq)\otimes d^{(1)}_{g
ightarrow \mathsf{Q}}(z):}{}$$

$$\overset{(1)}{g
ightarrow Q}(x_1)\otimes {\mathsf d} \hat{\sigma}^{(0)}({\mathsf Q} q
ightarrow {\mathsf Q} q)$$
:

Existing calculations: (based on DGLAP evolution)

- ZM-VFNS: Binnewies et al.; Cacciari et al.
- FFNS: Frixione et al.
- GM-VFNS:
 - direct part: Kramer, Spiesberger
 - resolved part: B.K., Kramer, Schienbein, Spiesberger (from hadroproduction)

Status:

- For comparison of GM-VFNS with preliminary ZEUS data (p_T, y, W, z distributions) see Kramer, Spiesberger, EPJC38(2004)309
- Including resolved part in GM-VFNS will help to improve results at small p_T
- Use new FFs with initial scale μ₀ = m_h

NUMERICAL RESULTS

Input parameters:

- $\alpha_{s}(M_{Z}) = 0.1181$
- $m_c = 1.5 \text{ GeV}, m_b = 5 \text{ GeV}$
- PDFs: CTEQ6M (NLO)
- FFs: NLO FFs from fits to LEP-OPAL data, initial scale for evolution: μ₀ = m_c (D-mesons) resp. μ₀ = m_b (B-mesons)
- Default scale choice: $\mu_R = \mu_F = \mu'_F = m_T$ where $m_T = \sqrt{p_T^2 + m^2}$

EXTRACTION OF D^0 , D^+ , D_s^+ , and Λ_c^+ FFs from LEP1 [1]

- $(1/\sigma_{tot})d\sigma/dx$, ZM-VFNS
- $\mu_R, \mu'_F = \sqrt{S}$
- Fit to LEP1 data from OPAL [2]

[1] B.K., Kramer, PRD71(2005)094013

[2] Alexander et al, ZPC72(1996)1

- $d\sigma/dx$, ZM-VFNS
- Comparison with CLEO [2], HRS [3], and TASSO [4]

B.K., Kramer, PRD71(2005)094013
 CLEO, PRD37(1988)1719, PRD62(2000)072003, PRD70(2004)112001
 HRS, PRL54(1985)2568, PLB206(1988)551

[4] TASSO, PLB136(1984)130

COMPARISON WITH CDF II DATA FOR $p\bar{p} \rightarrow (D^0, D^{\star+}, D^+, D^+_s)X$ [1]

- $d\sigma/d\rho_T$ (nb/GeV), $|y| \le 1$, GM-VFNS
- Uncertainty band: independent variation of $\mu_R, \mu_F, \mu'_F = \xi m_T, \xi \in [1/2, 2]$

- Prompt charm data (no secondary charm from B decay) from CDF in run II
- Data described by QCD within errors
- Predictions for \Lambda_c^+ available

[1] B.K.,Kramer,Schienbein,Spiesberger,PRL96(2006)012001; [2] Acosta et al,

B.A. Kniehl (Hamburg University)

D-meson production at NLO

[2]

COMPARISON WITH CDF II DATA FOR $p\bar{p} \rightarrow (D^0, D^{\star+}, D^+, D^+_s)X$ [1]

- $d\sigma/d\rho_T$ (nb/GeV), $|y| \le 1$, GM-VFNS
- Uncertainty band: independent variation of $\mu_R, \mu_F, \mu'_F = \xi m_T, \xi \in [1/2, 2]$

- Prompt charm data (no secondary charm from B decay) from CDF in run II
- Data and Theory compatible within errors
- Central values: Data/Theory ≃ 1.5 − 1.2

[1] Kniehl, Kramer, I.S., Spiesberger, hep-ph/0508129; [2] Acosta et al, PRL91(2003)241804

PREDICTIONS FOR $ep \rightarrow D^{\star+}X$ in the ZM-VFNS [1]

• Phase Space: $2 < Q^2 < 100 \text{ GeV}^2, 0.05 < y < 0.7,$ $1.5 \le p_{T,Lab}(D^*) \le 15 \text{ GeV}, |\eta_{Lab}(D^*)| < 1.5,$

•
$$\mu_R^2 = \mu_F^2 = {\mu'_F}^2 = \xi \frac{Q^2 + (p_T^*)^2}{2}$$

• Uncertainty band: variation of $\xi \in [1/2, 2]$

[1] B.K., Kramer, Maniatis, NPB711(2005)345

PREDICTIONS FOR $ep \rightarrow D^{*+}X$ IN THE ZM-VFNS [1]

- Phase Space: 2 < Q² < 100 GeV², 0.05 < y < 0.7, 1.5 ≤ p_{T,Lab}(D^{*}) ≤ 15 GeV, |η_{Lab}(D^{*})| < 1.5,
- Additional Cut: $p_T^*(D^*) > 2 \text{ GeV} (\gamma^* p\text{-CMS})$

•
$$\mu_R^2 = \mu_F^2 = {\mu'_F}^2 = \xi \frac{Q^2 + (p_T^*)^2}{2}$$

• Uncertainty band: variation of $\xi \in [1/2, 2]$

More distributions

[1] B.K., Kramer, Maniatis, NPB711(2005)345

In this talk: Discussion of one-particle inclusive production of heavy quarks in the GM-VFNS

• Available at NLO in the GM-VFNS:

- $\gamma\gamma \to HX$
- $\gamma p \rightarrow HX$
- $p\bar{p} \rightarrow HX$
- General expectation:
 - Improvement at $p_T \gg m_h$ due to updated FFs (and PDFs)
 - Mass effects: Improve agreement with (HERA) data for $p_T \gtrsim m_h$
 - Mass effects: Reduced factorization scale dependence

- In this talk: Discussion of one-particle inclusive production of heavy quarks in the GM-VFNS
- Available at NLO in the GM-VFNS:
 - $\gamma\gamma \to HX$
 - $\gamma p \rightarrow HX$
 - $p\bar{p} \rightarrow HX$
- General expectation:
 - Improvement at $p_T \gg m_h$ due to updated FFs (and PDFs)
 - Mass effects: Improve agreement with (HERA) data for $p_T \gtrsim m_h$
 - Mass effects: Reduced factorization scale dependence

- In this talk: Discussion of one-particle inclusive production of heavy quarks in the GM-VFNS
- Available at NLO in the GM-VFNS:
 - $\gamma\gamma \to HX$
 - $\gamma p \rightarrow HX$
 - $p\bar{p} \rightarrow HX$
- General expectation:
 - Improvement at $p_T \gg m_h$ due to updated FFs (and PDFs)
 - Mass effects: Improve agreement with (HERA) data for $p_T \gtrsim m_h$
 - Mass effects: Reduced factorization scale dependence

- In this talk: Discussion of one-particle inclusive production of heavy quarks in the GM-VFNS
- Available at NLO in the GM-VFNS:
 - $\gamma\gamma \rightarrow HX$
 - $\gamma p \rightarrow HX$
 - $p\bar{p} \rightarrow HX$
- General expectation:
 - Improvement at $p_T \gg m_h$ due to updated FFs (and PDFs)
 - Mass effects: Improve agreement with (HERA) data for $p_T \gtrsim m_h$
 - Mass effects: Reduced factorization scale dependence

Backup Slides

description of the second second

FONLL = FO+NLL [1]

$FONLL = FO + (RS - FOM0)G(m, p_T)$

FO: Fixed Order; FOM0: Massless limit of FO; RS: Resummed

$$G(m,p_T)=\frac{p_T^2}{p_T^2+25m^2}$$

$$\Rightarrow \text{FONLL} = \begin{cases} \text{FO} & : & p_T \lesssim 5m \\ \text{RS} & : & p_T \gtrsim 5m \end{cases}$$

back to schemes

[1] Cacciari, Greco, Nason, JHEP05(1998)007

COMPARISON WITH FONLL

FONLL = FO + (RS - FOM0)G(m, p_T) with

$$G(m, p_T) = \frac{p_T^2}{p_T^2 + 25m^2}$$

$$\label{eq:GM-VFNS} \begin{split} \text{GM-VFNS} &= \text{FO} + (\text{RS} - \text{FOM0})\text{G}(m, p_T) \text{ with } \\ \tilde{\text{G}}(m, p_T) &= 1 \end{split}$$

FO: Fixed Order; FOM0: Massless limit of FO; $RS \equiv ZM-VFNS$: Resummed

- Both approaches interpolate between FO and ZM-VFNS
 - FONLL: obvious;
 - ► GM-VFNS: matching with FO at quark level (see Olness,Scalise,Tung,PRD59(1998)014506)
- Factor $\tilde{G}(m, p_T)$ follows from calculation; $\tilde{G}(m, p_T) = 1 \leftrightarrow$ S-ACOT scheme
- Different point-of-view: GM-VFNS finally needs PDFs and FFs in this scheme.
- Numerical comparisons interesting and should be done!

Mass effects: GM-VFNS vs. ZM-VFNS $p\bar{p} \rightarrow D^{\star+}X$

- Results with old FFs with initial scale μ₀ = 2m_c
- Uncertainty band: independent variation of $\mu_R, \mu_F, \mu'_F = \xi m_T, \xi \in [1/2, 2]$

- In this example still p_T > 3m_c
- Mass effects bigger for small μ_R (large α_s(μ_R))

STRONG COUPLING CONSTANT

- PDG'04: $\alpha_s(M_Z) = 0.1187 \pm 0.0020$
- CTEQ6M PDFs: $\alpha_s(M_Z) = 0.118$; MRST03 $\alpha_s(M_Z) = 0.1165$;
- $d\sigma(p\bar{p} \rightarrow DX) \propto \alpha_s^2(1 + \alpha_s K)$

