CEM vs. NRQCD in CHARMONIUM PRODUCTION

JUNGIL LEE Korea University

Geoffrey T. Bodwin, Eric Braaten, JL, Phys. Rev. D 72, 014004 (2005).

> April 21, 2006 DIS 2006

Contents

- By imposing the CEM assumptions on the NRQCD factorization formulas for hadrons and for perturbative free quarks, we obtain constraints on the NRQCD matrix elements.
- The constraints are at odds with phenomenological determinations of the matrix elements and violate the NRQCD v-scaling rules.
- Direct comparison of CEM and NRQCD predictions with the CDF data for charmonium cross section at order α_s^3 (NLO 2 \rightarrow 1 + LO 2 \rightarrow 2) is provided.
- Multiple gluon emission effect is studied using phenomenological k_T smearing model of Gaussian form.
- k_T smearing is essential to obtain a reasonable p_T spectrum in the CEM. It is essential in NRQCD factorization in the P-wave case, which is constrained by decay data.

NRQCD Factorization Formalism

• NRQCD Factorization Formula

$$\sigma[AB \to H + X] = \sum_{n} c_n^{AB}(\Lambda) \langle \mathcal{O}_n^H(\Lambda) \rangle.$$

• Cross section is expressed in a linear combination of long-distance NRQCD matrix elements which are classified based on velocity scaling rules. The series can be truncated at a given order in v.

$$\mathcal{O}_n^H = \chi^{\dagger} \kappa_n \psi \mathcal{P}^H(\Lambda) \psi^{\dagger} \kappa'_n \chi,$$

$$\mathcal{P}^H(\Lambda) = \sum_X |H + X\rangle \langle H + X|.$$

• Short-distance coefficients $c_n^{AB}(\Lambda)$ are IR insensitive and perturbatively calculable.

Color-evaporation Model(CEM)

• CEM formula for inclusive quarkonium production

$$\sigma_{\rm CEM}[AB \to H + X] = F_H \int_{4m^2}^{4m_M^2} dm_{Q\bar{Q}}^2 \frac{d\sigma}{dm_{Q\bar{Q}}^2} [AB \to Q\bar{Q} + X],$$

- M is the lowest-lying meson containing a heavy quark Q.
- In the formula one sums over color and spin of the final-state quarks.
- $Q\bar{Q}$ pair is assumed to neutralize its color by interaction.
- In some versions of the CEM, color neutralization process is also assumed to randomize the spins of the Q and \bar{Q} .
- The F_H are constants that must be determined phenomenologically for each quarkonium state H.

Available Theoretical Calculations

- Predictions including NLO $2 \rightarrow 1$ and LO $2 \rightarrow 2$ subprocesses.
 - CEM: R. Vogt(2005) based on Mangano, Nason, Ridolfi, NPB 405, 507 (1993).
 - NRQCD: modified version of a code by Maltoni, Mangano, Petrelli.

to be compared with the CDF data for charmonium production.

- NLO $2 \rightarrow 1$ contribution to $d\sigma/dp_T^2$ includes singular terms $\sim \delta(p_T^2)$ and $1/p_T^2$, but but the integral of the cross section from $p_T = 0$ up to a given p_T is well behaved. (The separate integrals of the singularities are not well behaved.)
- Effects of soft-gluon emission make the curve smooth at low p_T .
 - We use a phenomenological k_T smearing model.
 - Proper way : include multiple gluon emission by resummation of logarithmic corrections to all orders in α_s .

- The CEM calculations that we quote fix the parameters m and F_H by using the fixed-target data.
- In the k_T -smeared CEM calculations that we quote, the amount of k_T smearing is adjusted to provide the best fit to the Tevatron J/ψ data.
- In the k_T -smeared NRQCD calculations, we do not adjust the amount of k_T smearing, but simply take the amount that was used in the CEM calculations.

What happens to NRQCD under CEM?

• If we assume CEM, NRQCD matrix elements are simplified.

$$\langle \mathcal{O}_n^H \rangle = \frac{1}{2\pi^2} F_H \int_0^{k_{\text{max}}} k^2 dk \, \langle \mathcal{O}_n^{Q\bar{Q}}(k) \rangle.$$

$$\mathcal{O}_n^{Q\bar{Q}}(k) = \chi^{\dagger} \kappa_n \psi \left(\int \frac{d\Omega_k}{4\pi} \sum_{\text{spins colors}} \sum_{\text{colors}} \mathcal{P}^{Q(+\boldsymbol{k})\bar{Q}(-\boldsymbol{k})} \right) \psi^{\dagger} \kappa'_n \chi,$$

Above equations embody the CEM assumptions.

 Any NRQCD matrix element reduces into a single matrix element upto multiplicative scaling factors that are completely determined.

$$\langle \mathcal{O}_n^H \rangle = \frac{3(2j+1)}{(2l+1)(2l+3)} C_n k_{\max}^{2l} \langle \mathcal{O}_1^H({}^1S_0) \rangle,$$

 $k_{\max}^2 = m_M^2 - m_c^2, \quad C_1 = 1, \quad C_8 = C_F = \frac{4}{3}.$

What happens to NRQCD under CEM?

• The CEM assumptions violate the v-scaling rules of NRQCD. Only powers of v that arise from covariant derivatives in operators are taken into account properly in the CEM.

	$1, {}^{1}S_{0}$	$1, {}^{3}S_{1}$	$8, {}^{1}S_{0}$	$8, {}^{3}S_{1}$	$1, {}^{1}P_{1}$	$1, {}^{3}P_{0}$	$1, {}^{3}P_{1}$	$1, {}^{3}P_{2}$	$8, {}^{1}P_{1}$	$8, {}^{3}P_{0}$	$8, {}^{3}P_{1}$	$8, {}^{3}P_{2}$
	NRQCD Factorization											
η_c	1		v^4	v^3					v^4			
J/ψ		1	v^3	v^4						v^4	v^4	v^4
h_c			v^2		v^2							
χ_{c0}				v^2		v^2						
χ_{c1}				v^2			v^2					
χ_{c2}				v^2				v^2				
Color-Evaporation Model												
Н	1	1	1	1	v^2							

NRQCD ME for S-wave production

• In the S-wave charmonium $(H = J/\psi, \psi(2S))$ production at the Tevatron with $p_T > 5$ GeV, the most important NRQCD ME are $\langle \mathcal{O}_8^H(^3S_1) \rangle$ and

$$M_r^H = (r/m^2) \langle \mathcal{O}_8^H({}^3P_0) \rangle + \langle \mathcal{O}_8^H({}^1S_0) \rangle, \ r \approx 3 \qquad (1)$$

• If we enforce the CEM assumptions, then the ratio of the two ME's differs from the predictions of NRQCD v-scaling.

$$R^{H} = \frac{M_{r}^{H}}{\langle \mathcal{O}_{8}^{H}({}^{3}S_{1}) \rangle} \sim v^{0} \gg R_{\text{CEM}}^{H} = \frac{r}{15} \frac{k_{\text{max}}^{2}}{m^{2}} + \frac{1}{3}.$$

• Since ${}^{3}S_{1}^{(8)}$ is important at large p_{T} and M_{r} is important at low p_{T} , in S-wave production we expect

$$\sigma_{\text{CEM}} < \sigma_{\text{NRQCD}}$$
: at low p_T
 $\sigma_{\text{CEM}} > \sigma_{\text{NRQCD}}$: at large p_T

Comparison with phenomenological fits

Reference	PDF	$R^{J/\psi}$	$R_{ m CEM}^{J/\psi}$	r	$m_c \; ({\rm GeV})$	$\langle k_T \rangle \ (\text{GeV})$			
LO collinear factorization									
[27]	MRS(D0) [28]	10 ± 4	0.44	3	1.48				
	CTEQ4L [29]	$4.1 \pm 1.2 {}^{+3.6}_{-1.3}$		3.5 3.4					
[30]	GRV-LO(94) [31]	$3.5 \pm 1.1 \ ^{+1.6}_{-0.9}$	0.46		1.5				
	MRS(R2) [32]	$7.8\pm1.9{}^{+8.0}_{-2.8}$							
[33]	MRST-LO (98) [34]	20 ± 4	0.46	3.4	1.5				
[00]	CTEQ5L [35]	17 ± 4	0.10						
parton-shower radiation									
	CTEQ2L [36]	1.4 ± 0.3	0.44	3	1.48				
[37]	MRS(D0) [28]	1.9 ± 0.6							
	GRV-HO(94) [31]	0.49 ± 0.11	0.49 ± 0.11						
[38]	CTEQ4M [29]	2.1 ± 0.8	0.45	3.5	1.55				
		k_T smearing	r 5						
[30]	CTEO4M [29]	5.7 ± 1.6	0.46	3.5	1.5	1.0			
[00]		2.6 ± 0.9	0.40			1.5			
[40]	MBS(D') [28]	6.3 ± 1.7	≈ 0.44	3	≈ 1.5	0.7			
		4.7 ± 1.2	/~ 0.11			1.0			

• As expected, $R^H \gg R^H_{\text{CEM}}$.

Comparison with Tevatron data (J/ψ)

- CEM underestimates the x-section at low p_T as expected.
- After including smearing effect, $\chi^2/d.o.f.$ decreases.
- NRQCD prediction is better in either case.
- NRQCD factorization has more free parameters than the CEM, but the CEM does not yield a satisfactory fit to the data.

PDF	$\langle {\cal O}_8^{J/\psi}({}^3S_1) angle$	$M^{J/\psi}_{3.5}$	$R^{J/\psi}$	χ^2 /d.o.f.
	$(\text{GeV}^3 \times 10^{-2})$	$({\rm GeV}^3 \times 10^{-2})$		
	NRQO	CD Factorization		
MRST98 HO	1.00 ± 0.22	8.83 ± 1.24	8.83 ± 2.27	7.16/(11-2)=0.80
GRV98 HO	1.02 ± 0.23	10.6 ± 1.42	10.4 ± 2.76	7.98/(11-2)=0.89
MRST98 HO (smeared)	1.41 ± 0.13	0.41 ± 0.15	0.29 ± 0.11	10.28/(11-2)=1.14
GRV98 HO (smeared)	1.54 ± 0.14	0.49 ± 0.16	0.32 ± 0.11	12.69/(11-2)=1.41
	Color-E	vaporation Model		
MRST98 HO				89.18/11 = 8.11
GRV98 HO				80.86/11 = 7.35
MRST98 HO (smeared)				20.78/(11-1)=2.08
GRV98 HO (smeared)				45.70/(11-1)=4.57

Comparison with Tevatron data $[\psi(2S)]$

- CEM underestimates the x-section at low p_T as expected.
- After including smearing effect, $\chi^2/d.o.f.$ decreases.
- NRQCD prediction is better in either case.
- NRQCD factorization has more free parameters than the CEM, but the CEM does not yield a satisfactory fit to the data.

TABLE V: Values of matrix elements, $R^{\psi(2S)}$, and $\chi^2/\text{d.o.f.}$ from the NRQCD factorization and CEM fits to the $\psi(2S)$ data. In the NRQCD factorization fits, we set $\langle \mathcal{O}_1^{\psi(2S)}(^3S_1) \rangle = 0.76 \text{ GeV}^3$ and give the fitted values of $\langle \mathcal{O}_8^{\psi(2S)}(^3S_1) \rangle$ and $M_{3.5}^{\psi(2S)}$.

PDF	$\langle \mathcal{O}_8^{\psi(2S)}(^3S_1) angle$	$M_{3.5}^{\psi(2S)}$	$R^{\psi(2S)}$	χ^2 /d.o.f.
	$({\rm GeV}^3 \times 10^{-3})$	$({\rm GeV}^3 \times 10^{-4})$		
	NRQC	D Factorization		
MRST98 HO	2.34 ± 0.47	44.0 ± 19.2	18.83 ± 9.08	0.35/(11-2)=0.04
GRV98 HO	2.51 ± 0.52	55.4 ± 22.2	22.02 ± 9.93	0.55/(11-2)=0.06
MRST98 HO (smeared)	2.12 ± 0.26	-6.77 ± 2.20	-3.19 ± 1.11	0.17/(11-2)=0.02
GRV98 HO (smeared)	2.34 ± 0.29	-6.80 ± 2.39	-2.90 ± 1.08	0.22/(11-2)=0.02
	Color-Ev	vaporation Model		
MRST98 HO				47.72/11 = 4.34
GRV98 HO				29.85/11 = 2.71
MRST98 HO (smeared)				$10.43/11 {=} 0.95$
GRV98 HO (smeared)				$1.49/11 {=} 0.14$

NRQCD ME for *P*-wave production

- The most important ME for χ_{cj} production $\langle \mathcal{O}_8^{\chi_{cj}}(^3S_1) \rangle, \quad \langle \mathcal{O}_{1,8}^{\chi_{cj}}(^3P_j) \rangle = (2j+1) \langle \mathcal{O}_{1,8}^{\chi_{c0}}(^3P_0) \rangle,$
- The ratio is a useful phenomenological variable.

$$R^{\chi_c} = \frac{\langle \mathcal{O}_8^{\chi_{c0}}({}^3S_1) \rangle}{\langle \mathcal{O}_1^{\chi_{c0}}({}^3P_0) \rangle / m^2} \sim \frac{v^0}{2N_c} \sim 0.17.$$

• The CEM assumptions lead to a different prediction for the ratio than the *v*-scaling rules of NRQCD.

$$R_{\rm CEM}^{\chi_c} = 15 C_F \frac{m^2}{k_{\rm max}^2} \sim \frac{1}{v^2} \gg R^{\chi_c}$$

• $R^{\chi_c} \ll R^{\chi_c}_{\text{CEM}}$ as expected.

Reference	PDF	R^{χ_c}	$R_{ ext{CEM}}^{\chi_c}$	$m_c \; ({\rm GeV})$				
	LO collinear factorization							
[27]	MRS(D0) [28]	$(6.6 \pm 0.8) \times 10^{-2}$	36	1.48				
[38]	CTEQ4L $[29]$	$(0.71 \pm 0.21) \times 10^{-2}$	40	1.55				
[33]	MRST-LO (98) [34]	$(5.8 \pm 1.1) \times 10^{-2}$	37	1.5				
	CTEQ5L [35]	$(4.7 \pm 0.8) \times 10^{-2}$	01	1.0				

• Since ${}^{3}P_{0}^{(8)}$ is important at low p_{T} and ${}^{3}S_{1}^{(8)}$ dominates at large p_{T} , we expect

 $\sigma_{\text{NRQCD}}(\chi_{cj}) > \sigma_{\text{CEM}}(\chi_{cj})$ at low p_T $\sigma_{\text{NRQCD}}(\chi_{cj}) < \sigma_{\text{CEM}}(\chi_{cj})$ at large p_T

Comparison with Tevatron data (χ_{cj})

Comparison with Tevatron data (χ_{cj})

TABLE VII: Values of matrix elements, R^{χ_c} , and $\chi^2/\text{d.o.f.}$ from the NRQCD factorization and CEM fits to the χ_c data. In the NRQCD factorization fits, the upper sets of parameters are for fits in which $\langle \mathcal{O}_1^{\chi_{c0}}({}^{3}P_0) \rangle$ is fixed, as described in the text, while the lower sets of parameters are for fits in which $\langle \mathcal{O}_1^{\chi_{c0}}({}^{3}P_0) \rangle$ is varied.

PDF	$\langle \mathcal{O}_1^{\chi_{c0}}({}^3P_0) angle$	$\langle \mathcal{O}_8^{\chi_{c0}}({}^3S_1) angle$	R^{χ_c}	χ^2 /d.o.f.
	$(\text{GeV}^5 \times 10^{-2})$	$(\text{GeV}^3 \times 10^{-3})$	(10^{-2})	
	NRQC	CD Factorization		
MRST98 HO	7.2 (input)	3.59 ± 0.39	11.23 ± 1.23	31.0/(11-1)=3.10
GRV98 HO	7.2 (input)	3.94 ± 0.43	12.30 ± 1.35	35.5/(11-1)=3.55
MRST98 HO (smeared)	7.2 (input)	1.71 ± 0.29	5.36 ± 0.89	17.4/(11-1)=1.74
GRV98 HO (smeared)	7.2 (input)	2.08 ± 0.32	6.50 ± 0.99	14.5/(11-1)=1.45
MRST98 HO	40.8 ± 6.3	1.20 ± 0.60	0.66 ± 0.35	2.97/(11-2)=0.33
GRV98 HO	48.7 ± 7.3	1.17 ± 0.65	0.54 ± 0.31	3.19/(11-2)=0.35
MRST98 HO (smeared)	3.88 ± 1.00	2.43 ± 0.36	14.12 ± 4.21	6.40/(11-2)=0.71
GRV98 HO (smeared)	4.39 ± 1.09	2.67 ± 0.39	13.66 ± 3.93	7.88/(11-2)=0.88
	Color-E	vaporation Model	l	
MRST98 HO				50.20/11 = 4.56
GRV98 HO				66.30/11 = 6.03
MRST98 HO (smeared)				16.15/11 = 1.47
GRV98 HO (smeared)				$63.69/11{=}5.79$

Comparison with Tevatron data (χ_{cj})

- CEM underestimates the x-section at low p_T as expected.
- After including smearing effect, $\chi^2/d.o.f.$ decreases.
- NRQCD factorization has more free parameters than the CEM, but the CEM does not represent the data adequately.
- The ${}^{3}P_{0}^{(1)}$ matrix element is constrained by data from P-wave decays.
- In order to obtain a fit in NRQCD factorization that is compatible with this constraint, we must include some k_T smearing.
- The optimal amount of smearing is less for NRQCD factorization than for the CEM.

Conclusion

- We compared CEM and NRQCD predictions for charmonium production with the CDF data.
 - NLO $2 \rightarrow 1$ parton processes are included.
 - Multiple gluon emission effect is included using k_T -smearing.
- CEM
 - not satisfactory in both normalization and slope.
 - $-k_T$ smearing improves CEM prediction but still unsatisfactory.
- NRQCD
 - NRQCD factorization has more free parameters than the CEM, but it gives a satisfactory fit to the data.
 - In the P-wave case, which is constrained by decay data, k_T smearing is essential to obtain a satisfactory fit.
- Proper inclusion of effects of multiple soft-gluon emission could provide a stringent test of NRQCD factorization in the *P*-wave case.