HEAVY-QUARK FRAGMENTATION FUNCTIONS IN e^+e^- Collisions

Carlo Oleari Università di Milano-Bicocca, Milan

> DIS2006, Tzukuba 21 April 2006

- Theoretical introduction
 - collinear logarithms
 - soft logarithms
- Non-perturbative contributions
- Results for *c* (and *b*) fragmentation functions
- Conclusions

The differential cross section for the production of a massive quark *Q* in the process

$$e^+e^- \rightarrow Z/\gamma (q) \rightarrow Q(p) + X$$

is calculable in PQCD, because the mass acts as a cut-off for final-state collinear singularities

$$\frac{d\sigma}{dx}(x,q^2,m^2) = \sum_{n=0}^{\infty} a^{(n)}(x,q^2,m^2,\mu^2) \,\bar{\alpha}_s^n(\mu^2) \qquad x = \frac{2\,p\cdot q}{q^2} \qquad E = \frac{\sqrt{q^2}}{2}$$

with μ = renormalization scale and $\bar{\alpha}_s \equiv \alpha_s/(2\pi)$.

The heavy-quark fragmentation function (FF) in e^+e^- annihilation is defined as

$$\hat{D}(x,q^2,m^2) \equiv \frac{1}{\sigma_{\rm tot}} \frac{d\sigma}{dx}(x,q^2,m^2)$$

Differential cross-section at order α_s

$$\int_0^1 \left(\frac{1}{1-x}\right)_+ f(x) \equiv \int_0^1 \left(\frac{f(x) - f(1)}{1-x}\right) \qquad \Longrightarrow \qquad \sigma = \sigma_0 \left(1 + \frac{\alpha_s}{\pi}\right) + \mathcal{O}\left(\frac{m^2}{q^2}\right)$$

Carlo Oleari Heavy-Quark Fragmentation Functions in e^+e^- Collisions 2

Two main issues

- Is this a "well-behaved" perturbation expansion?
- We do NOT "see" free quarks, even if they are heavy, but bound states (mesons and baryons). How can we incorporate these non-perturbative (hadronization) effects?

Collinear and soft logarithms

$$\begin{aligned} \frac{1}{\sigma_0} \frac{d\sigma}{dx} &= \sum_{n=0}^{\infty} a^{(n)}(x, q^2, m^2, \mu^2) \left(\frac{\alpha_s(\mu^2)}{2\pi}\right)^n \\ &= \delta(1-x) + \frac{\alpha_s(q^2)}{2\pi} C_F \left\{ 1 + \ln \frac{q^2}{m^2} \left(\frac{1+x^2}{1-x}\right)_+ - \left(\frac{\ln(1-x)}{1-x}\right)_+ (1+x^2) \right. \\ &+ 2\frac{1+x^2}{1-x} \log x + \frac{1}{2} \left(\frac{1}{1-x}\right)_+ (x^2 - 6x - 2) + \left(\frac{2}{3}\pi^2 - \frac{5}{2}\right) \delta(1-x) \right\} + \mathcal{O}\left(\frac{m^2}{q^2}\right) \end{aligned}$$

• In the limit $q^2 \gg m^2$,

$$a^{(n)} \sim \left(\log \frac{q^2}{m^2}\right)^n$$

and if $\alpha_s \log \frac{q^2}{m^2} \approx 1$ we cannot truncate the series at some fixed order, because each term in the series is of the same order as the first one \implies we have to resum these large contributions

• Same for soft logarithms, that arise when $x \rightarrow 1$.

Quasi-collinear behavior

 $(p+k)^{2} - m^{2} = 2p \cdot k$ = $2k_{0} \left(\sqrt{|\vec{p}|^{2} + m^{2}} - |\vec{p}| \cos \theta_{Qg} \right)$ $t = (t_{0}, \vec{0}, t_{z})$ $\eta = (1, \vec{0}, -1)$

 $p^{\nu} = zt^{\nu} + \xi' \eta^{\nu} - k_{\perp}^{\nu} \qquad p^{2} = t^{2} = m^{2} \qquad k^{2} = 0 \qquad \eta^{2} = 0$ $k^{\nu} = (1-z)t^{\nu} + \xi'' \eta^{\nu} + k_{\perp}^{\nu} \qquad t \cdot k_{\perp} = 0 \qquad \eta \cdot k_{\perp} = 0 \qquad k_{\perp}^{\nu} k_{\perp \nu} = -\mathbf{k}_{\perp}^{2}$ • factorization of the squared amplitude

$$|\mathcal{M}(p,k;\dots)|^{2} \simeq |\mathcal{M}(p/z;\dots)|^{2} \frac{8\pi\alpha_{s}}{2\,p\cdot k} S = |\mathcal{M}(p/z;\dots)|^{2} 8\pi\alpha_{s} \frac{z(1-z)}{\mathbf{k}_{\perp}^{2} + (1-z)^{2}m^{2}} S$$
$$S\left(z, \frac{m^{2}}{\mathbf{k}_{\perp}^{2}}\right) = C_{F}\left[\frac{1+z^{2}}{1-z} - \frac{2z(1-z)m^{2}}{\mathbf{k}_{\perp}^{2} + (1-z)^{2}m^{2}}\right]$$

• factorization of the phase space

$$d\Phi_{n+1} = d\Phi_{n-1} \frac{d^3p}{(2\pi)^3 2p_0} \frac{d^3k}{(2\pi)^3 2k_0} \delta^4(\dots+p+k) = \underbrace{d\Phi_{n-1} \frac{d^3t}{(2\pi)^3 2t_0} \delta^4(\dots+t)}_{d\Phi_n} \frac{1}{16\pi^2} \frac{dz}{z(1-z)} d\mathbf{k}_{\perp}^2$$

Then we can iterate to take into account multiple quasi-collinear emissions

$$\begin{aligned} d\sigma_{n+1} &= \int |\mathcal{M}(p,k;\dots)|^2 d\Phi_{n+1} = \int |\mathcal{M}(t;\dots)|^2 d\Phi_n \; \frac{\alpha_s}{2\pi} \int_0^1 dz \int_0^{\mu_f^2} d\mathbf{k}_\perp^2 \frac{1}{\mathbf{k}_\perp^2 + (1-z)^2 m^2} \; S \\ &= d\sigma_n \; \frac{\alpha_s}{2\pi} \, C_F \int_0^1 dz \left\{ \frac{1+z^2}{1-z} \log \left[1 + \frac{\mu_f^2}{m^2} \frac{1}{(1-z)^2} \right] + \dots \right\} \end{aligned}$$

Factorization theorem

In the limit $m^2 \ll q^2$ we can neglect terms proportional to powers of m^2/q^2 , and the single inclusive heavy-quark cross section can be written as (factorization theorem)

$$\frac{d\sigma}{dx}(x,q^2,m^2) = \sum_i \int_x^1 \frac{dz}{z} \frac{d\hat{\sigma}_i}{dz} \left(z,q^2,\mu_F^2\right) \hat{D}_i\left(\frac{x}{z},\mu_F^2,m^2\right)$$

- $\frac{d\hat{\sigma}_i}{dz} \quad \overline{\text{MS}}\text{-subtracted partonic cross section, for the production of the parton$ *i* $(process dependent)}$
- \hat{D}_i MS fragmentation functions for the parton *i* to "fragment" into the heavy quark *Q* (process independent)
- μ_F factorization scale

Example

$$\frac{d\sigma}{dx}(x,q^2,m^2) = \sum_i \int_x^1 \frac{dz}{z} \frac{d\hat{\sigma}_i}{dz} \left(z,q^2,\mu_F^2\right) \hat{D}_i\left(\frac{x}{z},\mu_F^2,m^2\right)$$

if i = g then

Resummation of collinear logs

$$\frac{d\sigma}{dx}(x,q^2,m^2) = \sum_i \int_x^1 \frac{dz}{z} \frac{d\hat{\sigma}_i}{dz} \left(z,q^2,\mu_F^2\right) \hat{D}_i\left(\frac{x}{z},\mu_F^2,m^2\right)$$

How to choose μ_F ?

If $\mu_F^2 \approx q^2$ then no large logarithms of q^2/μ_F^2 appear in $d\hat{\sigma}_i/dz$ and its perturbative expansion is reliable.

The large logarithms are moved in the fragmentation functions that obey the ($\mu_F = \mu$)

DGLAP evolution equations

$$\frac{d\hat{D}_i}{d\log\mu^2}(x,\mu^2,m^2) = \sum_j \int_x^1 \frac{dz}{z} P_{ij}\left(\frac{x}{z},\bar{\alpha}_s(\mu^2)\right) \hat{D}_j(z,\mu^2,m^2)$$

where the splitting functions P_{ij} have the expansion

$$P_{ij}(x,\bar{\alpha}_{s}(\mu)) = \bar{\alpha}_{s}(\mu)P_{ij}^{(0)}(x) + \bar{\alpha}_{s}^{2}(\mu)P_{ij}^{(1)}(x) + \bar{\alpha}_{s}^{3}(\mu)P_{ij}^{(2)}(x) + \mathcal{O}(\alpha_{s}^{4})$$

The DGLAP equations resum correctly all the large logarithms

Leading Log, Next-to-Leading Log...

Introducing the shorthand notation $L = \log (q^2/m^2)$

✓ with an expansion for P_{ij} up to order α_s , we resum all terms of the form

$$\underbrace{\frac{d\sigma}{dx}(x,q^2,m^2)}_{(\bar{\alpha}_s L)^n} = \sum_{n=0}^{\infty} \beta^{(n)}(x) \ (\bar{\alpha}_s L)^n}_{(\bar{\alpha}_s L)^n}$$

✓ with an expansion for P_{ij} up to order α_s^2 , we resum all terms of the form

$$\underbrace{\frac{d\sigma}{dx}(x,q^2,m^2)}_{\text{NLL}} = \sum_{n=0}^{\infty} \beta^{(n)}(x) \ (\bar{\alpha}_s L)^n + \sum_{n=0}^{\infty} \gamma^{(n)}(x) \ \bar{\alpha}_s \ (\bar{\alpha}_s L)^n}_{\bar{\alpha}_s \ (\bar{\alpha}_s L)^n \Longrightarrow \text{Next-to-Leading Log}}$$

 \checkmark ... so on, so forth.

The time-like splitting functions are known up to the third order [Mitov, Moch and Vogt, hep-ph/0604053]

Initial condition

How can we compute the initial condition for $\hat{D}_i(x, \mu^2, m^2)$?

$$\hat{D}_i(x,\mu^2,m^2) = d_i^{(0)}\delta(1-x) + \bar{\alpha}_s(\mu^2) d_i^{(1)}(x,\mu^2,m^2) + \mathcal{O}\left(\alpha_s^2\right)$$

Use the factorization theorem

$$\frac{d\sigma}{dx}(x,q^2,m^2) = \sum_i \int_x^1 \frac{dz}{z} \frac{d\hat{\sigma}_i}{dz} \left(z,q^2,\mu^2\right) \hat{D}_i\left(\frac{x}{z},\mu^2,m^2\right)$$

and match the expansion up to order α_s of the left- and right-hand side to obtain $d_i^{(0)}$ and $d_i^{(1)}$ [Mele and Nason, *Nucl. Phys.* **B361** (91) 626]

$$\frac{d\sigma}{dx}(x,q^2,m^2) = a^{(0)}(x,q^2,m^2) + a^{(1)}(x,q^2,m^2,\mu^2)\,\bar{\alpha}_s(\mu^2) + \mathcal{O}\left(\alpha_s^2\right)$$
$$\frac{d\hat{\sigma}_i}{dx}(x,q^2,\mu^2) = \hat{a}_i^{(0)}(x) + \hat{a}_i^{(1)}(x,q^2,\mu^2)\,\bar{\alpha}_s(\mu^2) + \mathcal{O}\left(\alpha_s^2\right)$$

The $d_i^{(2)}$ terms are known too, and have been computed by [Melnikov and Mitov, hep-ph/0404143; Mitov, hep-ph/0410205], following a different strategy.

Final recipe for collinear-log resummation

- ✓ start with $\hat{D}_i(x, \mu_0^2, m^2)$, with $\mu_0^2 \approx m^2$, so that no large logarithms of the ratio μ_0^2/m^2 appear in the initial conditions
- ✓ evolve $\hat{D}_i(x, \mu_0^2, m^2)$ from the low to the high energy scale μ with the DGLAP equation to obtain $\hat{D}_i(x, \mu^2, m^2)$
- ✓ use the factorization theorem to compute the resummed cross section.

Soft logarithms

In the region of the phase space of multiple soft-gluon emission ($x \rightarrow 1$), the differential cross section contains enhanced terms proportional to

$$a^{(n)} \approx c_{\rm LL}^{(n)} \left(\frac{\log^{2n-1}(1-x)}{1-x} \right)_{+} + c_{\rm NLL}^{(n)} \left(\frac{\log^{2n-2}(1-x)}{1-x} \right)_{+} + \dots$$

These terms can be organized in towers of $\log N$, where we introduce the Mellin transform

$$f(N) = \int_0^1 dx \ x^{N-1} f(x) \implies \int_0^1 dx \ x^{N-1} \left(\frac{\log^k(1-x)}{1-x}\right)_+ \approx \log^{k+1} N$$

The large-*N* contributions come from the regions where $x \rightarrow 1$, associated to the bremsstrahlung spectrum of soft and collinear emission.

Up to now, it is known how to resum all the Leading Log and Next-to-Leading Log [Dokshitzer, Khoze and Troyan, hep-ph/9506425; Cacciari and Catani, hep-ph/0107138]

$$\sum_{n=0}^{\infty} c_{\mathrm{LL}}^{(n)} \alpha_s^n \log^{n+1} N = \log N g_{\mathrm{LL}} (\alpha_s \log N)$$

$$\sum_{n=0}^{\infty} c_{\text{NLL}}^{(n)} \alpha_s^n \log^n N = g_{\text{NLL}} \left(\alpha_s \log N \right)$$

Non-perturbative effects

- X The weak point of the factorization theorem comes from the initial condition for the evolution of the fragmentation function, which is computed as a power expansion in terms of $\alpha_s(m)$: irreducible, non-perturbative uncertainties of order Λ_{QCD}/m are present.
- X The soft-gluon resummation functions g_{LL} and g_{NLL} contain singularities at large N which signal the eventual failure of perturbation theory and hence the onset of non-perturbative phenomena.
 - in the initial condition, the region $(1 x) m \approx \Lambda$ ($m/N \approx \Lambda$ in moment space) is sensitive to the decay of excited states of the heavy-flavoured hadrons, where Λ is a typical hadronic scale of a few hundreds MeV.
 - in the coefficient functions, when $(1 x)q^2 \approx \Lambda^2$, the mass of the recoil system approaches typical hadronic scales.

The matching of perturbative results with non-perturbative physics is a delicate problem, which rests, first of all, on a proper definition of the perturbative series.

Non-perturbative fragmentation function

We assume that all these effects are described by a non-perturbative fragmentation function D_{NP}^H , that takes into account all low-energy effects, including the process of the heavy quark turning into a heavy-flavoured hadron. The full resummed cross section, including non-perturbative corrections, is then written as

$$\frac{d\sigma^{H}}{dx}(x,q^{2}) = \sum_{i} \frac{d\hat{\sigma}_{i}}{dx} \left(x,q^{2},\mu_{F}^{2}\right) \otimes \hat{D}_{i}\left(x,\mu_{F}^{2},m^{2}\right) \otimes D_{\mathrm{NP}}^{H}(x)$$

The non-perturbative part D_{NP}^{H} is what is missing to go from the partonic cross section to the hadronic one \implies very sensitive to the perturbative part

It is expected to be universal \implies exctract it from e^+e^- data and use it in hadronic heavy-quark production.

Non-perturbative fragmentation function

The Mellin transform of the full resummed cross section, including nonperturbative corrections, is

$$\sigma_{H}(N,q^{2}) = \sigma_{Q}(N,q^{2},m^{2}) D_{\rm NP}(N)$$

We [Cacciari, Nason and C.O., hep-ph/0510032] have fitted CLEO and BELLE D^* data using the two-component form for $D_{\rm NP}$

$$D_{\rm NP}(x) = {
m Norm.} \times \left[\frac{\delta(1-x) + c \frac{(1-x)^a x^b}{N_{a,b}}}{N_{a,b}} \right], \qquad N_{a,b} = \int_0^1 (1-x)^a x^b$$

Simple phenomenological interpretation

- the hard term (the delta function) corresponds, in some sense, to the direct exclusive production of the *D**
- the rest accounts for *D**'s produced in the decay chain of higher resonances.

Non-perturbative fragmentation function

CLEO and BELLE *D** fits

- ✓ *D* mesons data fits near the $\Upsilon(4S)$ mass (10.6 GeV)
- ✓ Very good fit in the whole *x* range
- ✓ More fits in [Cacciari, Nason and C.O.], where $D^* \rightarrow D X$ have been modeled from decay chains and branching ratios
- ✓ B mesons data fits near the Z⁰ mass (91.2 GeV)

ALEPH D* fits at LEP

What about the supposed universality of the non-perturbative fragmentation function?

ALEPH with CLEO/BELLE parameters

0

5

10

Ν

15

20

X Discrepancy in the large-*x* (large-*N*) region

X The ratio data/theory well modeled by

Possible explanation

We can only **speculate** about the possible origin of the discrepancy. If this were due to a non-perturbative correction to the coefficient function of the form

•
$$1 + \frac{C(N-1)}{q^2}$$
 this would lead to the extra factor
 $\frac{1 + \frac{C(N-1)}{M_Z^2}}{1 + \frac{C(N-1)}{M_Y^2}} \implies \sim \frac{1}{1 + 0.044 (N-1)}$ if $C \sim 5 \,\text{GeV}^2$ large value!!
• $1 + \frac{C(N-1)}{E}$ with $E = \sqrt{q^2}/2$ then $C \sim 0.52$ GeV, a much more accept-

Demonstrating the absence (or the existence) of 1/E corrections in fragmentation functions would be a very interesting result, since it would help to validate or disprove renormalon-based predictions.

able value.

Conclusions

$$\frac{\sigma_{Q}(N, M_{Z}^{2}, m^{2})}{\sigma_{Q}(N, M_{\Upsilon}^{2}, m^{2})} = \frac{\bar{a}_{q}(N, M_{Z}^{2}, \mu_{Z}^{2})}{1 + \alpha_{s}(\mu_{Z}^{2})/\pi} E(N, \mu_{Z}^{2}, \mu_{\Upsilon}^{2}) \frac{1 + \alpha_{s}(\mu_{\Upsilon}^{2})/\pi}{\bar{a}_{q}(N, M_{\Upsilon}^{2}, \mu_{\Upsilon}^{2})}$$

- low-scale effects, both at the heavy-quark mass scale and at the non-perturbative level, cancel completely
- its prediction is then entirely perturbative (the evolution function *E* is totally perturbative)
- scale-variation effects do not explain the discrepancy
- mass effects in charm production on the Υ(4*S*) where computed at order α²_s, and found to be small [Nason and C.O., hep-ph/9903541]

Unfortunately, the low precision of the available data does not allow, at the moment, to resolve the issue of the absence (or the existence) of 1/E corrections in fragmentation functions.