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What is a fragmentation function?
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is calculable in PQCD, because the mass acts as a cut-off for final-state collinear singularities
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Differential cross-section at order αs
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Two main issues

� � Is this a “well-behaved” perturbation expansion?

� � We do NOT “see” free quarks, even if they are heavy, but
bound states (mesons and baryons). How can we incorporate
these non-perturbative (hadronization) effects?
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Collinear and soft logarithms
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and if αs log q2

m2

� 1 we cannot truncate the series at some fixed order, because each
term in the series is of the same order as the first one � � we have to resum these large
contributions

� � Same for soft logarithms, that arise when x � 1.



Quasi-collinear behavior
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Factorization theorem

� � factorization of the squared amplitude
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Factorization theorem

In the limit m2 � q2 we can neglect terms proportional to powers of
m2 �

q2, and the single inclusive heavy-quark cross section can be written
as (factorization theorem)

dσ
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dσ̂i
dz

MS-subtracted partonic cross section, for the production of the par-

ton i (process dependent)

D̂i MS fragmentation functions for the parton i to “fragment” into the
heavy quark Q (process independent)

µF factorization scale
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Example
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if i � g then
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Resummation of collinear logs
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How to choose µF?

If µ2
F

� q2 then no large logarithms of q2 �

µ2
F appear in dσ̂i

�

dz and its perturbative expan-

sion is reliable.
The large logarithms are moved in the fragmentation functions that obey the (µF

� µ)

DGLAP evolution equations
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The DGLAP equations resum correctly all the large logarithms
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Leading Log, Next-to-Leading Log. . .

Introducing the shorthand notation L � log

�

q2 �

m2

�

✓ with an expansion for Pi j up to order αs, we resum all terms of the form
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✓ . . . so on, so forth.

The time-like splitting functions are known up to the third order [Mitov, Moch and Vogt, hep-

ph/0604053]
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Initial condition

How can we compute the initial condition for D̂i
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Use the factorization theorem
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i [Mele and Nason, Nucl. Phys. B361 (91) 626]
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The d
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i terms are known too, and have been computed by [Melnikov and Mitov, �� �� � � �� �� �� ��

;

Mitov, �� �� � � � � �� � 	 � 
 ], following a different strategy.
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Final recipe for collinear-log resummation

✓ start with D̂i

�

x, µ2
0 , m2 �

, with µ2
0

� m2, so that no large loga-
rithms of the ratio µ2

0

�

m2 appear in the initial conditions

✓ evolve D̂i

�

x, µ2
0 , m2 �

from the low to the high energy scale µ

with the DGLAP equation to obtain D̂i
�

x, µ2 , m2 �

✓ use the factorization theorem to compute the resummed
cross section.
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Soft logarithms

In the region of the phase space of multiple soft-gluon emission (x � 1), the differential
cross section contains enhanced terms proportional to

a

	

n




� c

	

n
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log2n � 1 �

1 � x
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1 � x �
� c

	

n




NLL
log2n � 2 �

1 � x

�
1 � x �

� . . .

These terms can be organized in towers of log N, where we introduce the Mellin transform

f
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N

� �

1

0
dx xN � 1 f

�

x

� � � 1

0
dx xN � 1 logk �

1 � x

�

1 � x �
� logk � 1 N

The large-N contributions come from the regions where x � 1, associated to the
bremsstrahlung spectrum of soft and collinear emission.
Up to now, it is known how to resum all the Leading Log and Next-to-Leading Log [Dok-

shitzer, Khoze and Troyan, �� �� � � �� 
� � � 	 
 ; Cacciari and Catani, �� �� � � � � � � �� � �

]
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Non-perturbative effects

✗ The weak point of the factorization theorem comes from the initial condition for the
evolution of the fragmentation function, which is computed as a power expansion
in terms of αs

�

m

�

: irreducible, non-perturbative uncertainties of order

�

QCD

�

m are
present.

✗ The soft-gluon resummation functions gLL and gNLL contain singularities at large N
which signal the eventual failure of perturbation theory and hence the onset of non-
perturbative phenomena.

� � in the initial condition, the region

�

1 � x

�

m � �
(m

�

N � �

in moment space) is
sensitive to the decay of excited states of the heavy-flavoured hadrons, where

�

is
a typical hadronic scale of a few hundreds MeV.

� � in the coefficient functions, when

�

1 � x
�

q2 � �2, the mass of the recoil system
approaches typical hadronic scales.

The matching of perturbative results with non-perturbative physics is a delicate problem,
which rests, first of all, on a proper definition of the perturbative series.
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Non-perturbative fragmentation function

We assume that all these effects are described by a non-perturbative fragmen-
tation function DH

NP, that takes into account all low-energy effects, including
the process of the heavy quark turning into a heavy-flavoured hadron. The
full resummed cross section, including non-perturbative corrections, is then
written as

dσH

dx

�

x, q2 � � ∑
i

dσ̂i
dx

�

x, q2 , µ2
F

	

� D̂i

�

x, µ2
F , m2

	

� DH
NP

�

x

�

The non-perturbative part DH
NP is

what is missing to go from the par-
tonic cross section to the hadronic
one � � very sensitive to the per-
turbative part

It is expected to be universal � � exctract it from e

�

e � data and use it in
hadronic heavy-quark production.
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Non-perturbative fragmentation function

The Mellin transform of the full resummed cross section, including non-
perturbative corrections, is

σH

�

N, q2 � � σQ

�

N, q2 , m2 �

DNP

�

N

�

We [Cacciari, Nason and C.O., �� � � � � �� 
 � � � � 	

] have fitted CLEO and BELLE D

�

data
using the two-component form for DNP

DNP

�

x

� � Norm. �

�

δ

�

1 � x

� � c

�

1 � x

� axb

Na,b

�

, Na,b

�

1

0

�

1 � x

� axb

Simple phenomenological interpretation

� � the hard term (the delta function) corresponds, in some sense, to the direct
exclusive production of the D

�

� � the rest accounts for D

�

’s produced in the decay chain of higher reso-
nances.
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Non-perturbative fragmentation function

DNP

�

x

� � Norm. �

�

δ

�

1 � x

� � c

�

1 � x

� axb

Na,b

�

, Na,b

�

1

0

�

1 � x
� axb
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CLEO and BELLE D

�

fits

✓ D mesons data fits near the

� �

4S

�

mass (10.6 GeV)

✓ Very good fit in the whole x range

✓ More fits in [Cacciari, Nason and

C.O.], where D

� � D X have been
modeled from decay chains and
branching ratios

✓ B mesons data fits near the Z0

mass (91.2 GeV)
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ALEPH D

�

fits at LEP

✗ very few useful points

✗ large error bars

DNP

�

x

� � Norm. �

�
δ

�
1 � x

� � c

�

1 � x

� axb

Na,b

�

ALEPH a � 2.4

�

1.2 , b � 13.9

�

5.7 c � 5.9

�

1.7

CLEO

�

BELLE a � 1.8

�

0.2 , b � 11.3

�

0.6 c � 2.46

�

0.07

What about the supposed universality of the non-perturbative fragmentation function?



ALEPH with CLEO/BELLE parameters

✗ Discrepancy in the large-x (large-N)
region

✗ The ratio data/theory well modeled by

1
1 � 0.044

�

N � 1
�



Possible explanation

We can only speculate about the possible origin of the discrepancy.
If this were due to a non-perturbative correction to the coefficient function of
the form

� � 1 � C

�

N � 1

�

q2 this would lead to the extra factor

1 � C

	

N � 1




M2
Z

1 � C

	

N � 1




M2�

� � � 1
1 � 0.044

�

N � 1

� if C � 5 GeV2 large value!!

� � 1 � C

�

N � 1

�

E
with E �

�

q2

�

2 then C � 0.52 GeV, a much more accept-

able value.

Demonstrating the absence (or the existence) of 1

�

E corrections in fragmenta-
tion functions would be a very interesting result, since it would help to vali-
date or disprove renormalon-based predictions.
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Conclusions

σQ

�

N, M2
Z , m2 �

σQ

�

N, M2� , m2

� � āq

�

N, M2
Z , µ2

Z

�

1 �

αs

�

µ2
Z

� �

π
E

�

N, µ2
Z , µ2�

� 1 �

αs

�

µ2�
� �

π

āq

�

N, M2� , µ2�
�

� � low-scale effects, both at the heavy-quark
mass scale and at the non-perturbative
level, cancel completely

� � its prediction is then entirely perturbative
(the evolution function E is totally pertur-
bative)

� � scale-variation effects do not explain the
discrepancy

� � mass effects in charm production on
the

� �

4S

�

where computed at order α2
s ,

and found to be small [Nason and C.O.,

�� �� � � �� � � � 
 ��

]

Unfortunately, the low precision of the available data does not allow, at the moment, to resolve
the issue of the absence (or the existence) of 1

�

E corrections in fragmentation functions.


