XIV International Workshop on Deep Inelastic Scattering Tsukuba, Japan, April 20 – 24, 2006

H1 search for a Narrow Baryonic Resonance Decaying to $K_s^0 p$ ($K_s^0 \bar{p}$)

Dmitry Ozerov ITEP/DESY

On behalf of the H1 Collaboration

- Introduction
- Event selection and $K^0_{\ \varsigma}$ / proton reconstruction Tsukuba JAPAN
- Results
- Summary

Introduction I

Introduction II

- A lot of evidence, but not a discovery, since the statistics is low.
 Several similar experiments gave null results.
- High statistics experiments from e⁺e⁻ and hadron accelerators gave null results.

The question of existence of pentaquark state is still open.

Clarification can only come with additional experimental data.

Dmitry Ozerov, DIS 2006, Tsukuba, Japan

Selection of events with the H1 detector

K_s^0 selection

Identification of $K^0_{\ s}$ through it's decay to two charged pions. $K^0_{\ s} \rightarrow \pi^+\pi^-$

Search for secondary vertex, made by two oppositely charged tracks.

 $P_{T}(K^{0}_{s}) > 0.3 \text{ GeV}, |\eta| < 1.5$

Combinatorial background from the Λ and γ -conversion is removed.

Large and clean K_{s}^{0} sample (132,000 K_{s}^{0} from the fit with the 3% background contamination)

Inclusive K_{s}^{0} sample 5 < Q² < 100 GeV²

Identification of the protons

Resolution for the dE/dx $\sim 8\%$

Most probable dE/dx values for different particles: phenomenological parametrisation.

Likelihood approach is used to separate protons from other particles.

Efficiency varies between 65% and 100%. MC describes the efficiency within the 5%

Invariant $K_s^0 p(K_s^0 \overline{p})$ mass

Visible kinematic range : $P_{T}(K^{0}_{s}p) > 0.3 \text{ GeV}, |\eta| < 1.5$

No significant signal is observed in any of the Q² bins

20-24 April 2006

Dmitry Ozerov, DIS 2006, Tsukuba, Japan

MC Simulation of $\boldsymbol{\Theta}$

The production mechanism for the Θ is unknown.

From the assumption that the production of Θ is similar to that of the strange baryons – a modified MC is used to estimate acceptance. The Σ^{*+} baryon was forced to decay to $K^0_{c}p$ and to be on mass shell.

The Θ signal was approximated as a Gaussian with width (as extracted from MC) varying with the mass (4.8 MeV@M=1.48 GeV , 11.3 MeV@M=1.7 GeV)

Use of the modified frequentist approach based on likelihood ratios, which takes the statistical and systematic uncertainties into account.

The systematic uncertainties are 11 % for the signal (efficiency, lumi calculation, event selection..) and 2 % for the background determination.

The upper limit is given for the process $ep \rightarrow e \theta(\overline{\theta}) X \rightarrow e K^0 p(\overline{K^0} \overline{p}) X$

20-24 April 2006

Calculation of upper limit on cross section

The production mechanism for the Θ is unknown.

From the assumption that the production of Θ is similar to that of the strange baryons – a modified MC is used to estimate acceptance. The Σ^{*+} baryon was forced to decay to $K^0_{\ c}p$ and to be on mass shell.

The Θ signal was approximated as a Gaussian with width (as extracted from MC) varying with the mass (4.8 MeV @M=1.48 GeV , 11.3 MeV @M=1.7 GeV)

Use of the modified frequentist approach based on likelihood ratios, which takes the statistical and systematic uncertainties into account.

The systematic uncertainties are 11 % for the signal (efficiency, lumi calculation, event selection..) and 2 % for the background determination.

The upper limit is given for the process $ep \rightarrow e \theta(\bar{\theta}) X \rightarrow e K^0 p(\bar{K}^0 \bar{p}) X$

upper limit on the cross section

No fluctuation at the same mass in different Q² bins

20-24 April 2006

Dmitry Ozerov, DIS 2006, Tsukuba, Japan

upper limit on the cross section: baryon/anti-baryon case

The limits for the $\theta/\overline{\theta}$ (decay involving proton or anti-proton) are comparable in size.

No narrow resonance is observed.

No fluctuation is present at the same mass for particle or anti-particle in different Q^2 bins.

Comparison with the ZEUS signal I

Dmitry Ozerov, DIS 2006, Tsukuba, Japan

Comparison with the ZEUS signal II

20-24 April 2006

Dmitry Ozerov, DIS 2006, Tsukuba, Japan

Comparison with the ZEUS signal III

band selection (proton): P(p) < 1.5 GeV

H1 analysis, restricted to $Q^2 > 20.0 \text{ GeV}^2$ and to low momentum (P(p) < 1.5 GeV)

No significant signal is observed in $K_s^0 p/K_s^0 \overline{p}$ combinations

20-24 April 2006

Dmitry Ozerov, DIS 2006, Tsukuba, Japan

Summary

- H1 performed a search in DIS for a narrow resonance decaying to $K_s^0 p / K_s^0 \bar{p}$
- No significant signal observed in the Q^2 region between 5 and 100 GeV^2
- Assuming that in the fragmentation region the production of the pentaquark is similar to that of strange baryons, the mass dependent limits at 95% C.L. on the cross section are derived.

95% C.L. $\sigma(ep \rightarrow e \theta(\overline{\theta}) X \rightarrow eK^0 p(\overline{K^0} \overline{p}) X) < 30-90 pb$ for Θ mass = 1.48 - 1.7 GeV

 With similar selection and phase space as in the ZEUS analysis: no significant signal observed H1 does not support the ZEUS evidence,
 as expressed in their preliminary of

as expressed in their preliminary cross section

BACKUP SLIDES

Dmitry Ozerov, DIS 2006, Tsukuba, Japan

MC description

Good description of the shape of the M(K0sp) distribution by the inclusive MC

Dmitry Ozerov, DIS 2006, Tsukuba, Japan

MC description

Compare the MC description of the shape of K_{s}^{0} p combinations for ZEUS (Q²>20 GeV² case) and H1 (Q² > 5 GeV² case)

Dmitry Ozerov, DIS 2006, Tsukuba, Japan

