Charm spectroscopy, charm decays and new states at BaBar/Belle/Cleo

DIS 2006, April 20-24

Charm spectroscopy, etc.

- D_{sJ} study
- ◆D_{sJ} Branching Fractions.
- $D^+ \rightarrow K\pi^0$ Observation
- **D** mixing in K $\pi \pi$ (DCS)
- ★Leptonic Decays D → μυ

M. Saleem Brunel University Representing the BaBar collaboration

Charm Production at BaBar, Belle and Cleo

- Continuum production at B factory:
 - @ $\sqrt{s} \le 10.58 \, GeV$ [the mass of $\Upsilon(4S)$]
 - Are Excellent facilities to study charm physics more precisely and to search for new particles.
- ✓ Production mechanism in e^+e^- enviornment:
 - ✓ e^+e^- → $c\overline{c}$ (continuum) [ISR and $\gamma^*\gamma^*$]
 - ✓ b→c transitions $\sqrt{s} \approx 10.58 \, GeV$ (B decays)
- Cleo-c is running @ 3 < Ecm < 5 GeV, have > 480 pb⁻¹ data. [a charm factory]
- ✓ Distinguish by center-of-mass (CM) momentum, p^{*} (B factories)
- Large data samples:
 - \checkmark > 450 M cc events (from BaBar & Belle)
 - All these Detectors are with excellent tracking, vertexing, e.m. calorimetry, and particle ID

$D_{sJ}^{*}(2317)$ and $D_{sJ}(2460)$

- ✓ D_{sJ}*(2317) and D_{sJ}(2460) first observed by BABAR and CLEO in cc continuum events, and by Belle in B-decay
- Both masses unexpectedly low: below DK and D^{*}K threshold, respectively
- Only isospin-violating or electromagnetic decays kinematically allowed
 narrow widths
- Decay pattern and decay angular distributions consistent with interpretation as P-wave cs mesons with J^P=0⁺ and J^P=1⁺, respectively

BABAR 91 fb⁻¹ PRL90,242001(2003)

CLEO 13.5 fb⁻¹ PRD68,032002(2003)

BELLE 86.9 fb⁻¹ PRL 92, 012002(2003)

$D_{sJ}^{*}(2317)$ and $D_{sJ}(2460)$

- ✓ Detailed study of these decays to D_s^+ plus one or two π^{\pm} , π^0 , or γ 's
 - with 232 fb⁻¹ data. (BaBar: Submitted to PRD; hep/ex-0604030)

Node For $DsJ^*(2317)+$	Decay Channel	$D_{sJ}^{*}(2317)^{+}$	$D_{sJ}(2460)^+$
	$D_s^+ \pi^0$	Seen	Forbidden
	$D_s^+\gamma$	Forbidden	Seen
	$D_s^+ \pi^0 \gamma$ (a)	Allowed	Allowed
	$D_s^*(2112)^+\pi^0$	Forbidden	Seen
	$D_{sJ}^{*}(2317)^{+}\gamma$		Allowed
	$D_s^+ \pi^0 \pi^0$	Forbidden	Allowed
	$D_s^+ \gamma \gamma$ (a)	Allowed	Allowed
	$D_{s}^{*}(2112)^{+}\gamma$	Allowed	Allowed
	$D_s^+\pi^+\pi^-$	Forbidden	Seen

21/4/2006

M. Saleem

D_{sJ}(2460)⁺ Absolute Branching Fractions (BFs)

\checkmark BB sample with one B fully reconstructed

✓ study decays of other $B \rightarrow D^{(*)+,0} X$

Observe $D_{sJ}(2460)$ signals in the recoil mass, m_X

D_{sJ}(2460)⁺ Absolute BFs, cont.

✓ Combine with previously measured, exclusive product BFs $B \rightarrow \underline{D}^{(*)} D_{sJ} (2460)^+, D_{sJ} (2460)^+ \rightarrow D_s^+ \gamma / D_s^* (2112)^+ \pi^0$ to obtain absolute BFs:

$$B(D_{sJ}(2460)^{+} \to D_{s}^{*}(2112)^{+}\pi^{0}) = 0.51 \pm 0.11 \pm 0.09 \qquad (D_{s}^{*+} \to D_{s}^{+}\gamma)$$
BABAR
Preliminary
$$B(D_{sJ}(2460)^{+} \to D_{s}^{+}\gamma) = 0.15 \pm 0.03 \pm 0.02$$
Using $B(D_{sJ}^{+} \to d\pi^{+})$

Using B(
$$D_s^+ \rightarrow \phi \pi^+$$
)
= (4.78 ± 0.40 ± 0.47)%
as determined in this
analysis

D⁺→**K**⁺/ π ⁺ π ⁰ **B.F.**

21/4/2006

Absolute \mathcal{B} Results for D⁺ & D⁰ (57 pb⁻¹)

Absolute B Results for D_S⁺ (76 pb⁻¹) (Cleo-c)

Mode	<i>В</i> (%) (CLEO-c)	B (%) PDG
K _S K⁺	$1.28^{+0.13}_{-0.12}\pm0.07$	1.80±0.55
K ⁺ K ⁻ π ⁺	$4.54^{\tiny +0.44}_{\tiny -0.42}\pm 0.25$	4.3±1.2
Κ⁺Κ⁻ π⁺π⁰	$4.83^{+0.49}_{-0.46}\pm0.46$	-
$\pi^+\pi^+\pi^-$	$1.02 \begin{array}{c} +0.11 \\ -0.10 \end{array} \pm 0.05$	1.00±0.28

- ✓ About ±11% error
 - \checkmark error 11% \rightarrow ~4-6% (By this summer)
- Results are *preliminary*: more modes are being added & more data are being taken [CLEO-c]

Search for D⁰ mixing in $K\pi\pi$ BABARpreliminary

M. Saleem

Looking for New Physics:

- \cdot CP violation in the D system
- x >> y

$$x \equiv 2\frac{m_2 - m_1}{\Gamma_2 + \Gamma_1}, y \equiv \frac{\Gamma_2 - \Gamma_1}{\Gamma_2 + \Gamma_1}$$

$$R = \frac{\Gamma(D^{0} \to K^{+}\pi^{-}\pi^{0})}{\Gamma(D^{0} \to K^{-}\pi^{+}\pi^{0})}$$
Smaller DCS
relative to K π
= (0.214 ± 0.008 ± 0.008)%

Helicity-suppressed leptonic decay:

- directly related to decay constant f_{Ds}
- feeds interpretation of B, B_s mixing

Analysis Method: "D reco" in $e^+e^- \rightarrow cc$

Leptonic decays: $D_s \rightarrow \mu \nu$ and f_{Ds} (continued)

✓ Decay constant:

 $f_{D_s} = (279 \pm 17_{\text{stat}} \pm 6_{\text{syst}} \pm 19_{D_s \to \phi\pi}) \text{MeV} | \text{BABAR (230 fb^{-1})}_{\text{Preliminary}}$

(normalize to $D_s \rightarrow \phi \pi$); B(Ds $\longrightarrow \phi \pi$)=(4.81 ± 0.64) %

Using BaBar measurement: Phys. Rev. D71, 091104 (2005)

Leptonic decays: $D^+ \rightarrow \mu^+ \nu$ (CLEO)

Summary & Conclusions

- ✓ Several Important results are presented here:
 - ✓ the detailed study on the D_{sJ} meson.
 - ✓ Absolute B.F. for D_{sJ} , D⁺ and D⁰ mesons.
 - ✓ Measurement of B.F. for D⁺→ K⁺ π^0
 - \checkmark D⁰ mixing for the DCS decays
 - ✓ Fully leptonic decays D→ μ v and f_D
- Many Charm Baryon studies also in progress at B-factories; new states being discovered [See talk by:Hiromichi (Belle)]
- ✓ *B* factories:
 - Data is coming in fast & More new results are expected
- We can look forward to great advances in charm physics which will improve our understanding of the standard model and beyond

Back-up Slides

^{*}_{sJ}(2317) and D_{sJ}(2460)

- ✓ D_{sJ}*(2317) and D_{sJ}(2460) first observed by BABAR and CLEO in cc̄ continuum events, and by Belle in B-decay
- Both masses unexpectedly low: below DK and D^{*}K threshold, respectively
- Only isospin-violating or electromagnetic decays kinematically allowed
 narrow widths
- Decay pattern and decay angular distributions consistent with interpretation as P-wave cs mesons with J^P=0⁺ and J^P=1⁺, respectively

BABAR 91 fb⁻¹ PRL90,242001(2003)

CLEO 13.5 fb⁻¹ PRD68,032002(2003)

BELLE 86.9 fb⁻¹ PRL 92, 012002(2003)

Potential Model for CS system

Search for D⁰ mixing $K\pi\pi$

²(π+π⁰) [GeV/c²]

$$\begin{aligned} |D_1\rangle &= p|D^0\rangle + q|\overline{D}^0\rangle \\ |D_2\rangle &= p|D^0\rangle - q|\overline{D}^0\rangle \end{aligned}$$

✓ Mixing is charecterized: $x = \frac{\Delta m}{\Gamma}, \quad y = \frac{\Delta \Gamma}{2\Gamma} \quad R_{M}$ (%)=x²+y²/2

Mixing occurs if x or y is non-zero
Sign for New Physics:

✓ Observation of CP violation
 ✓ x >> y

- Uses Dalitz plot to enhance Cabibbo[®] favored rate since it proceeds largely via K⁻ρ⁺, while wrong-sign rate goes to K*⁺π⁻ & K^{*0}π⁰
- ✓ For CP conserving fit $R_M = (0.23^{+0.18}_{-0.14} \pm 0.04) \times 10^{-3}$ ✓ $R_M < 0.54 \times 10^{-3}$ @ 95% C.L.
- ✓ R_M is consistent with no mixing at 4.5% C.L.

21/4/2006

New Charmed Baryon: $\Lambda_{c}(2940)^{+}$ $\Lambda_{c}^{+} = c [du]$

✓ Observed in c<u>c</u> continuum events in the decay mode D⁰p (D⁰→K⁻π⁺, K⁻π⁺π⁺π⁻) Preliminary

m = $(2939.8 \pm 1.3 \pm 1.0)$ MeV/c² $\Gamma = (17.5 \pm 5.2 \pm 5.9)$ MeV

✓ First observation of $\Lambda_c(2880)^+ \rightarrow D^0 p$

 $m = (2881.9 \pm 0.1 \pm 0.5) \text{ MeV/c}^2$

 $\Gamma = (5.8 \pm 1.5 \pm 1.1) \text{ MeV}$

✓No structure in D⁺p

– No doubly-charged partner for either state

Charm Mixing

 Time evolution is given by an effective Hamiltonian

$$i\frac{\partial}{\partial t} \begin{pmatrix} D^{0}(t) \\ \overline{D}^{0}(t) \end{pmatrix} = \begin{pmatrix} \mathbf{M} - \frac{i}{2}\mathbf{\Gamma} \end{pmatrix} \begin{pmatrix} D^{0}(t) \\ \overline{D}^{0}(t) \end{pmatrix}$$

$$\checkmark \text{ The mass eigenstates } D_{1} D_{2} \text{ are } |D_{1}\rangle = p|D^{0}\rangle + q|\overline{D}^{0}\rangle$$

$$|D_{2}\rangle = p|D^{0}\rangle - q|\overline{D}^{0}\rangle$$

$$|D_{2}\rangle = p|D^{0}\rangle - q|\overline{D}^{0}\rangle$$
where $|q^{2}| + |p^{2}| = 1$

- ✓ Mixing can be characterized in terms of the masses m₁, m₂ and widths Γ_1 , Γ_2 of the mass eigenstates: $x = \frac{\Delta m}{\Gamma}$, $y = \frac{\Delta \Gamma}{2\Gamma}$
- ✓ Mixing occurs if x or y is nonzero
- ✓ Sign for New Physics:
 - ✓ Observation of CP violation

✓ x >> y

The D0 can decay to a final state f via direct decay or via mixing

Time Integrated Mixing Rate:

 $R_{M} =$