

Heavy flavor production at HERA-B

Roberto Spighi, INFN Bologna Italy For the HERA-B Collaboration

XIV INTERNATIONAL WORKSHOP ON DEEP INELASTIC SCATTERING 20-24 APRIL 2006, TSUKUBA

DIS, 20-24 April 2006

Roberto Spighi (HERA-B coll.)

Heavy flavor production at HERA-B

The HERA-B detector

- Fixed target detector at HERA (DESY) IR \sim 5 MHz
- 920 GeV/c proton beam ($\int s = 41.6 \text{ GeV}$)
- Di-lepton trigger (e^+e^- and $\mu^+\mu^-$)
- High angular coverage (15-220 mrad in bending plane)
- High resolution spectrometer very good particle ID for (e, μ , π , K, p)

J/ψ and ψ' signals

 J/ψ production: p_T distribution

preliminary data (electron channel), compared with p-A results ($\int s=38.8 \text{ GeV}$) agreement with muon channel in all distributions

DIS, 20-24 April 2006

Roberto Spighi (HERA-B coll.)

J/ψ production: x_F distribution

Preliminary data (e⁺e⁻ sample), compared with p-A results at 38.8 GeV

A dependence of J/ψ production

Parameterization of $\sigma_{pA} = \sigma_{pN} \cdot A^{\alpha}$; $\sigma = N/(\varepsilon \cdot L) = \frac{d\sigma_{pA}}{d\sigma_{pN}} \frac{dx_F}{dx_F} = A^{\alpha(x_F)}$ cross section:

Determine α from two different targets: C (A=12) and W (A=183.8)

DIS, 20-24 April 2006

Roberto Spighi (HERA-B coll.)

Heavy flavor production at HERA-B

Measured in different reference system (CS, GJ, HCM) and wrt p_T and x_F

Heavy flavor production at HERA-B

Y' production ratio: p_T and x_F distributions

$$\text{fraction of } J/\psi \text{ from } \psi \text{: } R_{\psi'} = \rho_{\psi'} \times \frac{B_{J/\psi \to \ell^+ \ell^-}}{B_{\psi' \to \ell^+ \ell^-}} \cdot B_{\psi' \to \ell^+ \ell^-} = (7.0 \pm 0.2 \pm 0.4_{BRs})\%$$

constraint on the double ratio (test of lepton universality)

$$\rho_{\psi'}^{e^+e^-} / \rho_{\psi'}^{\mu^+\mu^-} = \frac{B_{\psi' \to e^+e^-}}{B_{J/\psi \to e^+e^-}} / \frac{B_{\psi' \to \mu^+\mu^-}}{B_{J/\psi \to \mu^+\mu^-}} = 1.00 \pm 0.08 \pm 0.04$$

current PDG avg.: 1.03 ± 0.12

HERA-B measurements extend the range of the previous results with comparable or better precision

DIS, 20-24 April 2006

Roberto Spighi (HERA-B coll.)

Heavy flavor production at HERA-B

$$R_{\chi_{\mathbf{c}}} = \frac{\sum \boldsymbol{\sigma}(\chi_{c(i)} \to \mathbf{J}/\psi\gamma)}{\boldsymbol{\sigma}_{\mathrm{INCL}}(\mathbf{J}/\psi)} = \frac{N(\chi_{c})}{N(\mathbf{J}/\psi)} \cdot \frac{\varepsilon_{J/\psi}}{\varepsilon_{\chi \to J/\psi} \cdot \varepsilon_{\gamma}}$$

Result already published from the 2000 data $370 \pm 74 \quad \chi_c \text{'s} (\mu^{+}\mu^{-} + e^{+}e^{-}):$ $R(\chi_c) = 0.32 \pm 0.06 \pm 0.04$ [Phys. Lett. B 561, 61 (2003)]

Preliminary: 2002/3 data 10080 ± 740 χ_c 's ($\mu^*\mu$) 5870 ± 660 χ c's (e+e-) (the largest ever analyzed)

Fraction of J/ψ from $\chi c \rightarrow R(\chi c) = 0.21 \pm 0.05$

background: mixed events

$R_{\chi c}$ experimental situation

Not clear experimental panorama

Hidden beauty production

(14)

Open charm production: cross sections

(16)

Open charm production: A dependence

(17)

Conclusion

Summary slides

J/ψ production distributions and nuclear effects

20

Measured in different reference system (CS, GJ, HCM) and wrt p_T and x_F

Spare slides

Preliminary results on particle-antiparticle asymmetry

DIS, 20-24 April 2006

J/ψ cross section: signals

$$\sigma_{J/\psi}^{(A)} = \frac{N_{J/\psi \to e^+ e^-/\mu^+\mu^-}^{(A)}}{Br(J/\psi \to e^+ e^-/\mu^+\mu^-) \cdot \mathcal{L}^{(A)} \cdot \varepsilon^{(A)}}$$

for each target material (*A* = 12 [C], 48 [Ti], 184 [W])

N \rightarrow number of J/ ψ £ \rightarrow Luminosity $\epsilon \rightarrow \text{efficiency}$ BR $\rightarrow \text{branching ratio}$

J/ψ cross section: experiments and theory

- σ_{pN} and σ_{pp} results with \sqrt{s} from 6.8 to 200 GeV
- all measurements corrected for the same updated BRs and A-dep. parameter
- theoretical curve: **fit** to J/ψ measurements + ψ cross sections and ψ/ψ production ratios (29 results in all) in the context of **NLO NRQCD** (F. Maltoni)

Do $\rightarrow \mu^{+}\mu^{-}$

expected BR for Standard Model $\sim 10^{-19}$ supersimmetric model enhances to $\sim 10^{-7}$

Upper limit on the branching ratio:

BR(D°→µ⁺µ⁻) < 2.0 x 10⁻⁶ (90% cl) hep-ex/0405059 Phys Lett B 596 (2004) 173

Previous limit: CDF: BR(D° $\rightarrow \mu^{+}\mu^{-}$) < 2.5 ×10⁻⁶ Phys.Rev. D 68 (2003) 091101

Direct γ production: dominant process $gq \rightarrow \gamma q$ \Rightarrow Unique sensitivity to gluon density function

(normalization still arbitrary)

DIS, 20-24 April 2006

Hard photon analysis

Roberto Spighi (HERA-B coll.)

Pentaquark search

Use the full MB data sample (~210M evts, 3 nuclear targets C, Ti, W) to:

- search for the reported pentaquark signals
- provide upper limits on particle yield ratios (vs $\Lambda(1520)$ and $\Xi^{0}(1530)$)
- possibly determine physical quantities (width, spin, parity, charge) of pentaquarks for different final states (p-K⁰, Ξ - π)

Pentaquark search $\Theta^+ \rightarrow pK^0$

• Upper limit on particle yield ratio:

$$\Theta^+/\Lambda_{1520} < 0.02 \text{ at } 95\% \text{ C.L.}$$

(Hermes: ~ 1.6 ÷ 3.5)
• Upper Limit on $\frac{Bd\sigma}{dy}|_{y\sim 0}$ is 3.7 (2.5) µb/nucl for Θ^+ (Ξ^{--})

(30)

RA-B

Pentaquark search $\Xi^{--}(\Xi^{++}) \rightarrow \Xi^{-}\pi^{-}(\Xi^{+}\pi^{+})$

DIS, 20-24 April 2006

Roberto Spighi (HERA-B coll.)

Heavy Flavor production at HERA-B

(31)