Elastic J/ψ production at HERA

Yingchun Zhu H1, DESY, Germany

14th International Workshop on Deep Inelastic Scattering

April 20-24, 2006, Tsukuba, Japan

- Introduction
- Data Analysis
- Results
- Summary

Introduction

Diffractive Vector Meson Production

Diffractive Vector Meson Production Models Regge Model: photoproduction σ cross section (µb) Jot (YP) W^{0.22} 10.22 $\sigma(\gamma p \rightarrow \omega p)$ J/Ψ \mathbb{P} 10 n 10 ZEUS H1, prelim. $\rightarrow \psi(25)p$ JOYP o fixed taraet • Soft Pomeron exchange 10 $\sigma(\gamma p \rightarrow T p$ $\alpha_P(t) = \alpha_{P0} + \alpha'_P \cdot t$ 10 10^{2} W(GeV) 10 • Slow rise of σ with increasing W ρ, ω, ϕ show Regge behaviour $\sigma \propto W^{0.22}$ $\sigma \propto W^{0.22}$ • J/ψ is not described by Regge Shrinkage $\frac{d\sigma}{dt} \propto e^{bt}$, $b = b(W_0) + 4\alpha'_P \cdot ln(\frac{W}{W_0})$ $\sigma \propto W^{0.80}$ Increasing M_{VM}^2 : • S-channel helicity conservation (SCHC) Regge-Model \longrightarrow pQCD Model

3

pQCD Model:

- Exchange of at least 2 gluons
- Steeper rise of σ with increasing W $\sigma \propto [x \cdot g(x, Q_{eff}^2)]^2$, $x = 4Q^2/W^2$, $Q_{eff}^2 = (Q^2 + M_{\psi}^2)/4$
- No or weak shrinkage

pQCD needs hard scale: Q^2 , M^2_{VM} , t

- MRT (Martin, Ryskin and Teubner)
 - skewed gluon distribution (x \neq x')
 - parton-hadron duality approach
 - predicts W and Q^2 dependence

 FMS (Frankfurt, McDermott, Strikman)

- skewed gluon distribution
- dipole approach
- predicts W dependence

Data Analysis

Cross Section Determination

$$\sigma(\gamma p \to J/\psi p) = \frac{N_{notag} \cdot (1 - f_{\psi(2S)}) \cdot (1 - f_{pdis})}{\epsilon \cdot BR \cdot \mathcal{L} \cdot \Phi_{\gamma}}$$

- N_{notag} : the number of signal events without forward tag.
- $f_{\psi(2S)}$: contamination from $\psi(2S)$
- f_{pdis} : correction from proton dissociation

- \mathcal{L} : luminosity
- Φ_{γ} : integrated photon flux

Systematic uncertainties:

- the track reconstruction efficiency
- the lepton identification efficiency
- the trigger efficiency
- the separation of elastic events from proton dissociation
- • • • •

The total systematic uncertainties on the cross section are 8% (TT in electroproduction), 9% (TT in photoproduction), 10% (TC) and 11% (CC), respectively.

Results

Q^2 Dependence

Fit:
$$\sigma \propto (M_{J/\psi}^2 + Q^2)^{-n}$$

yields: $n = 2.486 \pm 0.080 \pm 0.068$

$$\chi^2/ndf = 0.5$$

- H1 and ZEUS: in good agreement
- At large Q^2 , data sensitive to gluon distribution

W Dependence

• $\sigma \propto W^{\delta}$

- photoproduction:(40< W <305GeV)
 - $\delta: \delta = 0.75 \pm 0.03 \pm 0.03$ $\delta = 0.69 \pm 0.02 \pm 0.03$ (ZEUS)
 - pQCD calculations strongly depend on gluon distribution
 - electroproduction: (40 < W < 160 GeV)
 - The resulting δ is consistent with that in photoproduction
 - pQCD calculation based on CTEQ6M describe data

No Q^2 dependence of δ is observed

t Dependence (photo- and electroproduction)

- Date well described by simple exponential $\frac{d\sigma}{dt} \propto e^{bt}$; $\chi^2/ndf = 0.25$
- Dipole form disfavoured $\frac{d\sigma}{dt} \propto (1 t/m_{2g}^2)^{-4}; \quad \chi^2/ndf = 5.5$

- One-dimensional fit: $\frac{d\sigma}{dt}(W) \propto W^{4(\alpha(<t>)-1)}$ describe the data well
- Two-dimensional fit: $\frac{d\sigma}{dt} \propto e^{b_0 t} (\frac{W}{W_0})^{4(\alpha(t)-1)}$
 - photoproduction: $\alpha_0 = 1.224 \pm 0.010 \pm 0.012$ $\alpha' = (0.164 \pm 0.028 \pm 0.030) \text{ GeV}^{-2}$
 - electroproduction: $\alpha_0 = 1.183 \pm 0.054 \pm 0.030$ $\alpha' = (0.019 \pm 0.139 \pm 0.076) \text{ GeV}^{-2}$

Soft pomeron trajectory: $\alpha(t) = 1.08 + 0.25 \,\, {\rm Gev}^{-2} {\cdot} t$

Shrinkage

• One-dim. and two-dim. fit: one-dim. (data points): $d\sigma/dt \propto e^{bt}$

two-dim. (lines): $\frac{d\sigma}{dt} \propto e^{(b_0 + 4\alpha' ln(W/W_0)) \cdot t}$

- Similar W dependence of b seen from H1 and ZEUS
- Shrinkage seen in photoproduction the b values increase with W

Helicity Studies

- SCHC: J/ψ keeps the helicity of the photon
- The SCHC can be tested by measurements of the angular distributions, θ^* , ϕ^* , Φ (Φ only measured in electroproduction)

- solid line fit to the data dash line SCHC prediction
- For ϕ^* and Φ , SCHC prediction is in agreement with data
- Extract the spin-density matrix elements by fitting the data

f)

g)

h)

Ī

i)

j)

 $|t| [GeV^2]$

0.5

0.5

0.5

0.5

0

0.5

0

 $\Leftarrow Q^2$ and t dependence of spin-density matrix elements

• No evidence for SCHC violation:

 r_{11}^{04} , $r_{00}^5 + 2r_{11}^5$, and $r_{00}^1 + 2r_{11}^1$ expected to be zero. $r_{11}^1 = (1 - r_{00}^{04})/2$

• use
$$r_{00}^{04}$$
 to extract σ_L and σ_T

Helicity studies show consistency with SCHC

$$R = \frac{\sigma_L}{\sigma_T} = \frac{r_{00}^{04}}{\epsilon \cdot (1 - r_{00}^{04})} \ (\epsilon \approx 0.99)$$

H1 and ZEUS: agree well

• $\sigma_{\gamma p} = \sigma^T + \epsilon \cdot \sigma^L$

 σ^{T} dominates at low Q^{2} At large Q^{2} , $\sigma_{L}\sim\sigma_{T}$

 Data reasonably well described by MRT

Summary

Measurements of cross section for J/ψ photoproduction and electroproduction.

- Q^2 dependence: Data sensitive to gluon distribution at large Q^2 .
- W dependence: No Q^2 dependence of δ .

Described by pQCD. Data show a high sensitivity to the gluon density of the proton in low x and low Q^2 .

- t dependence well described by a simple exponential function.
- Effective pomeron trajectories are determined.
- Shrinkage seen in photoproduction.
- Helicity studies: support SCHC.

The ratio $R = \frac{\sigma_L}{\sigma_T}$ measured and described by pQCD.

backup slides

Summary of some most important event selection criteria

Period	1999 - 2000				
Date set	I			IV	
Kinematic region	Electroproduction	Photoproduction			
Q^2 range [GeV ²]	2-80	< 1			
$Q^2 > [GeV^2]$	8.9	0.05			
$W_{\gamma p}$ [GeV]	40-160		135-235	205-305	
t [GeV ²]	< 1.2				
Decay channel	$J/\psi ightarrow \mu^+\mu^-$		$J/\psi ightarrow e^+e^-$		
Lepton signature	Track-Track		Track-Cluster	Cluster-Cluster	
trigger	s15,s61	s15,s54	s33	s40	
			$ heta_1$: 80-155	$ heta_1$: 160-174	
Lepton polar angle $[^{o}]$	20-160		$ heta_2$: 160-177	$ heta_2$:160-175.5	
			$p_{t1} > 0.7$, $p_1 > 0.8$	$E_{1,2} > 4.2$	
Lepton energy [GeV]	$p_t > 0.8$		$E_2 > 4.2$	max(E1, E2) > 6	
Elastic selection	No signal in forward detectors				
$\int {\cal L} \; {\sf dt} \; [pb^{-1}]$	54.79		30.26	26.90	

W dependence:

Data set	$Q^2[{\sf GeV}^2]$	$< Q^2 > [{ m GeV}^2]$	δ
TT	<1	0.05	$0.75 \pm 0.03 \pm 0.03$
TT	2-5	3.2	$0.67 \pm 0.20 \pm 0.14$
	5-10	7.0	$0.83 \pm 0.31 \pm 0.15$
	10-80	22.4	$0.69 \pm 0.32 \pm 0.14$

Table 1: The parameters δ ($\sigma \propto W^{\delta}$) measured in bins of Q^2 in the range 40 < W < 160GeV and |t| < 1.2GeV². The values $< Q^2 >$ indicate the bin centre value in the Q^2 range considered. The first error is statistical and the second systematic.

t dependence:

Data set	$< Q^2 > [{\sf GeV}^2]$	W[GeV]	$b[GeV^{-2}]$
TT	0.05	40-160	$4.57 \pm 0.06^{+0.11}_{-0.18}$
TT	3.2	40-160	$4.11 \pm 0.26 \pm 0.37$
	7.0		$3.50 \pm 0.50 \pm 0.49$
	22.4		$3.49 \pm 0.45 \pm 0.33$

Data set	$< Q^2 > [{ m GeV}^2]$	W[GeV]	$b[GeV^{-2}]$
TC	0.05	135-235	$5.08 \pm 0.14^{+0.25}_{-0.27}$
СС	0.05	205-305	$5.41 \pm 0.20^{+0.29}_{-0.40}$

Table 2: The slope parameters b derived from $\frac{d\sigma}{dt} \propto e^{-b|t|}$ in photoproduction and electroproduction. The values $\langle Q^2 \rangle$ indicate the bin centre value in the Q^2 range considered. The first error is statistical and the second systematic.