Spin structure functions at low Q² from JLab data

Vipuli Dharmawardane (Jefferson Lab) for the CLAS collaboraton

OUTLINE

Formalism and physics overview
Overview of the experiment
Results
Summary

Double polarized inclusive electron scattering

Longitudinally polarized beam and target

Inclusive electron scattering

$$\frac{d\sigma}{dE'd\Omega} = \Gamma_{v} \left[\sigma_{T} + \epsilon \sigma_{L} + P_{e} P_{t} \left(\sqrt{1 - \epsilon^{2}} A_{1} \sigma_{T} \cos \psi + \sqrt{2\epsilon(1 - \epsilon)} A_{2} \sigma_{T} \sin \psi \right) \right]$$

Electron asymmetry

$$A_{\parallel}(v,Q^{2}) = \frac{\frac{d\sigma}{dE'd\Omega}(\uparrow\downarrow) - \frac{d\sigma}{dE'd\Omega}(\uparrow\uparrow)}{\frac{d\sigma}{dE'd\Omega}(\uparrow\downarrow) + \frac{d\sigma}{dE'd\Omega}(\uparrow\uparrow)}$$

Virtual photon asymmetries

$$\mathsf{A}_{1} = \frac{\sigma_{1/2}^{\mathsf{T}} - \sigma_{3/2}^{\mathsf{T}}}{\sigma_{1/2}^{\mathsf{T}} + \sigma_{3/2}^{\mathsf{T}}}$$

$$\mathsf{A}_{2} = \frac{2\sigma_{1/2}^{\mathsf{TL}}}{\sigma_{1/2}^{\mathsf{T}} + \sigma_{3/2}^{\mathsf{T}}}$$

$$\mathbf{A}_{\parallel} = \mathbf{D}(\mathbf{A}_1 + \mathbf{\eta}\mathbf{A}_2)$$

Spin structure function

$$\mathsf{g}_{1}(\mathsf{x},\mathsf{Q}^{2}) = \frac{\mathsf{v}^{2}}{\mathsf{Q}^{2}} \left(\mathsf{A}_{1} + \sqrt{\frac{\mathsf{Q}^{2}}{\mathsf{v}^{2}}} \mathsf{A}_{2}\right) \mathsf{F}_{1}$$

$$D = \frac{1 - \epsilon E'/E}{1 + \epsilon R}, \quad \eta = \frac{\epsilon \sqrt{Q^2}/E}{1 - \epsilon E'/E}$$

Q² evolution of the spin structure function g₁

Jefferson Lab

Experimental Status of Spin SF g₁

Spin structure function g_1 for the deuteron

 A_1 - A_2 parameterization from the code "AO" & "MAID2000" together with a fit of the world DIS data and old JLab data

$$\mathbf{g}_{1}(\mathbf{x},\mathbf{Q}^{2}) = \frac{\mathbf{v}^{2}}{\mathbf{Q}^{2}} \left(\mathbf{A}_{1} + \sqrt{\frac{\mathbf{Q}^{2}}{\mathbf{v}^{2}}} \mathbf{A}_{2}\right) \mathbf{F}_{1}$$

For a resonance A_1 (and g_1) can be written in terms of helicity amplitudes $\sigma_{1/2}^T \rightarrow |A_{1/2}|^2$

 $\sigma_{3/2}^{T} \rightarrow |A_{3/2}|^{2}$

$$\mathbf{A}_{1} = \frac{|\mathbf{A}_{1/2}|^{2} - |\mathbf{A}_{3/2}|^{2}}{|\mathbf{A}_{1/2}|^{2} + |\mathbf{A}_{3/2}|^{2}}$$

Q^2 dependence of g_1/F_1

Virtual photon asymmetry A₁ at large x

DIS region minimal Q² dependence $A_1(x,Q^2) \approx \frac{g_1(x,Q^2)}{F_1(x,Q^2)}$

 $\underline{LO} \qquad \underbrace{\sum e_i^2 \Delta q_i(x)}_{\sum e_i^2 q_i(x)}$

•Valence quarks dominate at large x

 $\Box x \rightarrow 1$ in pQCD

Minimal gluon exchanges
Spectator pair have opposite helicities
A₁ \rightarrow 1

Farrar and Jackson PRL 35, 1416 (1975)

Virtual photon asymmetry A₁ for the proton

SU(6)
$$A_1^p = \frac{5}{9}, \quad A_1^n = 0$$

Hyperfine perturbed QM

 makes S=1 pairs more energetic than S=0 pairs
 At large x struck quark carry the spin of the nucleon
 N. Isgur, Phys. Rev. D 59, 34013

Duality suppress transitions to specific resonances in the final state $\gamma + N \rightarrow N^*$

states in 56⁺ and 70⁻

F. Close and W. Melnitchouk Phys. Rev. C 68, 035210

Virtual photon asymmetry A₁ for the deuteron

 Proton and deuteron results fall below the parameterization of the world data at Q² = 10 GeV²
 A₁ is Q² dependent
 Data need to be included in pQCD DGLAP analyses

Proton and deuteron results are in better agreement with the HFP quark model

Polarized parton distributions

Not well known at large x

•Predictions for $x \rightarrow 1$

	<u>d/u</u>	<u>∆u/u</u>	<u>∆d/d</u>
SU(6)	1⁄2	2/3	-1/3
HFP quark model	0	1	-1/3
pQCD	1/5	1	1

Recent analysis by M. Harai, S. Kumano and N. Saito

Polarized parton distributions

Contribution from the s quark is ignored

$$LO \xrightarrow{\Delta u} \frac{5g_{1}^{p} - 2g_{1}^{d} / (1 - 1.5\omega_{D})}{5F_{1}^{p} - 2F_{1}^{d}}$$

$$\frac{\Delta d}{d} \approx \frac{8g_{1}^{d} / (1 - 1.5\omega_{D}) - 5g_{1}^{p}}{8F_{1}^{d} - 5F_{1}^{p}}$$

Our data for the $\Delta u/u$ are the statistically most precise available

 \mathbf{A}_1^p or \mathbf{A}_1^d not very sensitive to $\Delta d/d$

• JLab Hall A and Hall B results for $\Delta d/d$ show no indication of a sign change

Disagree with pQCD predictions (assume hadron helicity conservation) First moment of $g_1(x,Q^2)$

Generalized sum rules for Γ_1

Ji & Osborne

Spin structure function $g_1(x,Q^2)$ is related to the forward virtual compton scattering amplitude S_1

(X. Ji et al., J. Phys. G 27, 127)

 $S_{I}(0,Q^{2}) = \frac{8}{Q^{2}} \int_{0}^{1} g_{I}(x,Q^{2}) dx$

Calculable

Measurable

Includes the elastic contribution

Parton description Operator Product Expansion $\Gamma(Q^{2}) = \frac{1}{8}Q^{2}S_{I}(0,Q^{2}) = \sum_{\tau=2,4,...} \frac{\mu_{\tau}(Q^{2})}{(Q^{2})^{(\tau-2)/2}}$ $\Gamma_{I}(Q^{2}) = \Gamma(Q^{2}) - \Gamma(el)$

Twist-2 part is knownHigher twist terms yet to be evaluated

Transition between parton and hadron degrees of freedom
calculable in Lattice QCD

Hadron description Inelastic part of S₁

$$\overline{S}_{I}(0,Q^{2}) = -\frac{\kappa^{2}}{M^{2}} + cQ^{2} + \dots$$

c calculable in χPT

 $\Gamma_{I}(Q^{2}) = \frac{Q^{2}}{8} \overline{S}_{I}(0,Q^{2})$

First moment Γ_1 for the proton and deuteron

Γ_1 for the proton : low Q^2

$$\Gamma_{1} = \frac{\mathbf{Q}^{2}}{8} \left[-\frac{\mathbf{\kappa}^{2}}{\mathbf{M}^{2}} + \overline{\mathbf{S}}_{1}(0,0)\mathbf{Q}^{2} + \dots \right]$$

 Expand in chiral perturbation theory in a power series of pion mass
 Calculations at next-toleading order in momenta

For the proton-neutron difference the ChPT expansion should hold for higher Q²

In the proton-neutron difference $\Delta(1232)$ contribution drops out. Other resonances are reduced as well

SUMMARY

A broad physics program to study the spin structure of the proton, neutron and their excited states in progress at Jefferson Lab Hall B.

 \bullet g₁ and Γ ₁ cover a wide kinematic range

Results for 1.6 GeV and 5.6 GeV data show strong Q² dependence and have better precision than existing data
 Low Q² Γ₁ results agree with HB_χPT calculations
 Improvements in the precision of the polarized parton distributions at large x

2.5 and 4.2 GeV data will fill in the intermediate Q² region with more precision

ADDITIONAL SLIDES

Comparison of kinematics for A₁

Deuteron as a proton+neutron target

Deuteron can be in a S state or a D state

In the S state the spin of the proton and the neutron are aligned with the deuteron spin

•The probability of being in the D state ≈ 0.056

$$2\Gamma_1^{d} = \left(1 - \frac{3}{2}\omega_d\right) \left(\Gamma_1^{p} + \Gamma_1^{n}\right)$$

From asymmetries to spin structure function g₁

Models

• $A_2 \rightarrow$ Wandzura-Wilczek relation in the DIS region and the code MAID 2000 in the resonance region

• $F_1 \rightarrow$ Fit to world data

• $A_1 \rightarrow$ Fit to DIS data and AO in the resonance region

EG1a data to optimize the parameters

Asymmetry $A_1 + \eta A_2$ for the proton

For a resonance A_1 can be written in terms of helicity amplitudes $A_1 = \frac{|A_{1/2}|^2 - |A_{3/2}|^2}{|A_{1/2}|^2 + |A_{3/2}|^2}$ $A_{1/2} = -\frac{1}{2} (M_{1+}^{(3/2)} + 3E_{1+}^{(3/2)})$ $A_{3/2} = -\frac{\sqrt{3}}{2} (M_{1+}^{(3/2)} - E_{1+}^{(3/2)})$

For a pure magnetic dipole transition N $\Delta(1232)$ $\downarrow \uparrow \uparrow \rightarrow H \downarrow \downarrow$ SU(6) \rightarrow Pure spin flip

$$\mathbf{A}_{1} = \frac{\left(-\frac{1}{2}\right)^{2} - \left(-\frac{\sqrt{3}}{2}\right)^{2}}{\left(-\frac{1}{2}\right)^{2} + \left(-\frac{\sqrt{3}}{2}\right)^{2}} = -0.5$$

Background subtraction

¹²C data were used to simulate
¹⁵N background

Limited statistics ¹⁵N data were fitted with high statistics ¹²C data.

$$\sigma_{15_{\rm N}} = \left(a + b \frac{\sigma_{\rm n}}{\sigma_{\rm D}}\right) \sigma_{12_{\rm C}}$$

□ *a* and *b* are in good agreement with the expected numbers; a=7/6, b=1/6

Background subtraction

Dilution Factor

Gives the contribution to the count rates from unpolarized target constituents

$$\mathsf{DF} = \frac{{}^{15}\mathsf{ND}_3 - \mathsf{Background}}{{}^{15}\mathsf{ND}_3}$$

□No Q² dependence

