New Results on Testing Duality in Spin Structure from Jefferson lab Hall A

Nilanga Liyanage University of Virginia. Jefferson Lab Hall A Collaboration

- DoF in the QCD Lagrangian are current quarks and gluons
- But the DoF observed in nature are Hadrons
- To understand hadron structure in QCD -in the confinement region
 vital to understand the transition from partonic DoF to Hadronic DoF

Important clues from Quark-Hadron duality

Deep Inelastic Scattering

High Q^2 and W>2GeV: fine resolution \rightarrow we see partons

D. J. Gross, H. D. Politzer and F. Wilczek

Resonance region

Low Q^2 and W<2 GeV: coarse resolution \rightarrow we don't see partons.

The nucleon goes through different excited states: the resonances

DIS versus resonance:

two very different pictures of the nucleon.

Quark-hadron duality

I. Niculescu et al., PRL 85 (2000) 1182

Was duality seen in F_{p}^{2} an accident or a global phenomena?

In order to gain a broad-based understanding of duality, need to explore duality in:

- Proton vs. Neutron
- Unpolarized vs. Polarized structure functions
- Duality in ratios of structure functions: R
- •Duality in Semi-Inclusive reactions.

New Duality data in these areas are just coming in

Previous data from hall A: E94-010, low Q²

Indication of duality from Jlab Hall A for $g_1^{^{3}\text{He}}$

The experiment E01-012

Test of spin duality on the neutron (and ³He)

The E01-012 Collaboration

K. Aniol, T. Averett, W. Boeglin, A. Camsonne, G.D. Cates, G. Chang, J.-P. Chen, Seonho Choi, E. Chudakov, B. Craver, F. Cusanno, A. Deur, D. Dutta, R. Ent, R. Feuerbach, S. Frullani, H. Gao, F. Garibaldi, R. Gilman, C. Glashausser, O. Hansen, C. Hyde-Wright, D. Higinbotham, H. Ibrahim, X. Jiang, M. Jones, A. Kelleher, J. Kelly, C. Keppel, W. Kim, W. Korsch, K. Kramer, G. Kumbartzki, J. LeRose, R. Lindgren, N. Liyanage, B. Ma, D. Margaziotis, P. Markowitz, K. McCormick, Z.-E. Meziani, R. Michaels, B. Moffit, P. Monaghan, C. Munoz Camacho, K. Paschke, B. Reitz, A. Saha, R. Sheyor, J. Singh, K. Slifer, P. Solvignon, V. Sulkosky, A. Tobias, G. Urciuoli, K. Wang, K. Wijesooriya, B. Wojtsekhowski, S. Woo, J.-C. Yang, X. Zheng, L. Zhu and the Jefferson Lab Hall A Collaboration

The Jefferson Lab Accelerator

Experimental setup

 $\rightarrow \pi/e$ reduced by 10⁴

³He as an effective neutron target

The polarized ³He target

- Two chamber cell
- Pressure ~ 14 atm under running conditions
- ♦ High luminosity: 10³⁶ s⁻¹cm⁻²

$$L_{tg} \sim 40 cm$$

The polarized ³He system

 Longitudinal and transverse configurations

2 independent
 polarimetries:
 NMR and EPR

Unpolarized cross sections: ³He(ee')

Agreement between both HRS better than 2%

g_1^{3He} at constant Q^2

Virtual Photon-Nucleon Asymmetry

In the parton model:

$$A_1(x,Q^2) \approx \frac{g_1(x,Q^2)}{F_1(x,Q^2)}$$

If Q^2 dependence similar for g_1 and for $F_1 \Longrightarrow$ weak Q^2 dependence of A_1

From the resonance:

If local duality observed in g_1 and $F_1 \longrightarrow A_1^{res} = A_1^{dis}$

 $A_1^{3}He$

Summary

- E01-012 provides precision data of Spin Structure Functions on neutron (3 He) in the resonance region for 1.0<Q²<4.0(GeV/c)²
- Direct extraction of g_1 and g_2 from our data
- Overlap between E01-012 resonance data and DIS data \rightarrow First dedicated test of Quark-Hadron Duality for neutron and ^{3}He SSF
- \rightarrow Final results expected soon