Transversity results from COMPASS Horst Fischer Universität Freiburg

on behalf of the COMPASS Collaboration

DIS2006

XIV International Workshop on Deep Inelastic Scattering

20/April/2006 - 24/April/2006

A Polarization

Single Hadrons

Hadron Pairs

Physics Goals of COMPASS

Contribute to the understanding of the non-perturbative physics of the nucleon

<u>nucleon spin structure</u>

- Gluon Polarization $\Delta G/G$
- Inclusive Asymmetries
 M. Stolarski
- transverse spin structure function h₁(x)
- Sivers distribution function
- Flavor dependent polarized quark helicity densities ∆q(x)
- spin dependent fragmentation functions ΔD_q^{Λ} B. Grube
- Diffractive VM-Production

N. d'Hose, F.H. Heinsius

nucleon spectroscopy

Primakoff-Reactions

- polarizability of π and K
- glueballs and hybrids
- charmed mesons and baryons
 - semi-leptonic decays
 - double-charmed baryons

The COMPASS Spectrometer @ CERN

Transverse Quark Polarizations (1)

3 distribution functions are necessary to describe the spin structure of the nucleon at LO:

 ∆_Tq(x) decouples from leading twist DIS because helicity of quark must flip
 No mixture with Gluons in evolution

 Valence like behavior

Transverse Quark Polarizations (2)

For DIS three possible quark polarimeters suggested:

- Azimuthal distribution of (leading) π
- Azimuthal dependence of the plane containing leading & next to leading hadrons
- \clubsuit Measure transverse polarization of Λ

- ← Results!
- ← Results!
- ← Results!

Data Sample

Data taking with transversely polarized ⁶LiD Target during 5 periods distributed over 3 years

(Useful for studies of systematic error!)

Year	Days data taking	DIS Events	
2002	19	1.5*106	Results published PRL94, 202002 (2005)
2003	14	3.0 *10 ⁶	 Trigger upgrade - x_{Bj}, Q² acceptance enlarged
2004	24	5.9 *10 ⁶	- ECAL, RICH

DIS Single-Hadron Event Analyses

Leading Hadrons only

Single hadron production

Two possible azimuthal asymmetries:

(a) fragmentation of transversely polarized quarks with finite transverse momentum to unpolarized hadrons

 \rightarrow Collins effect (access to transversity)

(b) modulation of transverse momentum of unpolarized quarks in the transverse polarized nucleon

 \rightarrow Sivers effect

$$A_{\text{Siv}} = \frac{A_{UT}^{\sin\Phi_{\text{Siv}}}}{f \cdot P} = \frac{\sum_{a} e_{a}^{\uparrow} \cdot f_{1T_{a}}^{\perp} \cdot D_{a}^{h}}{\sum_{a} e_{a}^{2} \cdot q_{a} \cdot D_{a}^{h}}$$

f dilution factor; P target polarization; $D_{NN} = (1-y)/(1-y+y^2/2)$ depolarization factor

The Coordinate System

 Collins and Sivers terms in SIDIS cross-section depend on different combinations of angles ⇒ distinguishable

Collins: $A_{Coll} \sim \sin \phi_{Coll}$ $\phi_{Coll} = \phi_h - \phi_S$, $= \phi_h + \phi_S - \pi$

Sivers: $A_{Siv} \sim \sin \phi_{Siv}$ $\phi_{Siv} = \phi_h - \phi_S$

- ϕ_{s} = azimuthal angle of spin vector of <u>initial-state</u> quark/nucleon
- $\hat{z} \phi_{s}$, = azimuthal angle of spin vector of <u>fragmenting</u> quark with $\phi_{s'} = \pi - \phi_{s}$ (spin flip)

 ϕ_h = azimuthal angle of hadron momentum

Event selection

Collins-Asymmetries (Deuteron Target)

Collins-Asymmetries (Deuteron Target)

Sivers-Asymmetries (Deuteron Target)

Sivers-Asymmetries (Deuteron Target)

DIS Events with Hadron-Pairs

***** Interference Fragmentation

The Coordinate System

Breit frame, where
z is the virtual photon direction
the x-z plane is the lepton scattering plane
\$\phi_{s'}\$ = azimuthal angle of spin vector of <u>fragmenting</u> quark

with $\phi_{s'} = \pi - \phi_s$ (spin flip) $\phi_R = \text{ is defined by:}$ $\cos \phi_R = \frac{(\mathbf{q} \times \mathbf{l})}{|\mathbf{q} \times \mathbf{l}|} \cdot \frac{(\mathbf{q} \times \mathbf{R}_T)}{|\mathbf{q} \times \mathbf{R}_T|}$ $\sin \phi_R = \frac{(\mathbf{l} \times \mathbf{R}_T) \cdot \mathbf{q}}{|\mathbf{q} \times \mathbf{l}| |\mathbf{q} \times \mathbf{R}_T|}$ $\phi_{RS} = \phi_R - \phi_{S'} = \phi_R + \phi_S - \pi$

Selection of Hadron Pairs

Select all combinations of h⁺ and h⁻ hadrons with:

> z_1 > 0.1, z_2 > 0.1, $\Sigma z_i < 0.9$ > x_{f1} > 0.1, x_{f2} > 0.1 x10³ 100 < N > = 1.980 1.2 **z**_{neg} 60 40 all h 20 0.8 0 2 Δ 8 6 0.6 x10⁴ dN/dz 40 < z > = 0.170.4 30 0.2 20 10 0<u></u> <u></u>.1 0.2 0.4 0.6 0.8 1.2 Zpos 0.2 0.4 0.6 0.8 1.2 1

z

Two-Hadron Asymmetries

Systematic errors are smaller than the quoted statistical errors

Interference Fragmentation Function $H_{q}^{4h}(z, M_{h}^{2})$

One model

Interference Fragmentation Function $H_{a}^{4h}(z, M_{b}^{2})$

DIS Events with A

influence of Fragmentation

Λ from scattering off Deuteron

Summary & Outlook

COMPASS has produced transverse spin asymmetries off the deuteron

- single /all hadron Collins asymmetries
- two-hadron interference asymmetries
- all pairs
- leading pairs

A polarization

Sivers asymmetries for single hadron

All analyzed data, so far, indicate small Asymmetries

cancellation of proton & neutron?

Next steps:

- ➡ Hadron-pair and Λ analysis on 2004 data ongoing \rightarrow double event sample
- extracting asymmetries including PID information
- 2006 Measurements with transversely polarized proton target planned
- 2006 enlarged x_{Bi} acceptance with new target magnet