Fitting PDFs	Defining Jets	Multijets	Underlying event	

High- Q^2 physics at the LHC

Frank Krauss

Institute for Theoretical Physics TU Dresden

DIS 2006, KEK, 23.4.2006

(日) (同) (三) (三)

-2

TUD

F. Krauss High- Q^2 physics at the LHC

Fitting PDFs	Defining Jets	Multijets	Underlying event	

Outline

Introduction

- 2 Knowledge of the initial state: PDFs
- 3 Knowledge of QCD evolution: Jets
- 4 Knowledge of background topologies: Multijets
- 5 Knowledge of non-factorizable QCD: Underlying event

6 Summary

A (1) > A (1) > A

Introduction	Fitting PDFs	Defining Jets	Multijets	Underlying event	Summary

Reminder: Physics @ LHC

- Many interesting signals: Higgs (or alternative EWSB), SUSY, ED's, ...
- But: Severe backgrounds in nearly all channels, (almost always with large influence of QCD)
 depend on detailed understanding of QCD
 - \implies depend on detailed understanding of QCD.
- Examples:
 - Central jet-veto in VBF (Higgs)
 - Multi-jet backgrounds for SUSY (e.g. Z+jets)
- Todays signals = tomorrows backgrounds.

A (1) > A (2) > A

Introduction	Fitting PDFs	Defining Jets	Multijets	Underlying event	

Scope of this talk

- YES: maybe lots of interesting physics at LHC
- BUT: (nearly) nothing comes for free:
 - A signal is what remains after background subtraction.
 - How well do we understand bread-and-butter physics?

• SO: I won't talk too much about Higgs, BSM, etc..

I'll talk about our understanding of QCD

as far as I can tell.

TUD

▲ 同 ▶ → 三 ▶

Motivation

- PDFs are basic input for cross section calculations
- PDFs so far mainly determined from DIS data
- Uncertainties remain, typically around 5%-10%, larger for instance in high- Q^2 gluons
- Prepare for inclusion of LHC data in fits
- Ongoing projects: FastNLO & NLO@Grid

see talks by M.Wobisch and D.Clement

▲ 同 ▶ → 三 ▶

Input of hadron colliders

- PDFs usually measured in DIS, Input of hadron colliders: gluon @ high Q².
- Sensitivity through

$$\sigma_{pp\to X}(s) = \int \mathrm{d}x_1 \mathrm{d}x_2 f_i(x_1, Q_F^2) f_j(x_2, Q_F^2) \hat{\sigma}_{ij\to X}(\hat{s}, \mu_R^2),$$

where $f_{i,j} = PDFs$, $\hat{s} \sim x_1 x_2 s$.

(ロ) (四) (三) (三)

- Idea for extraction of PDF: Compare σ @ NLO with data.
- Problem: Duration of NLO calculation.

Quality of theory vs. data

F. Krauss High- Q^2 physics at the LHC

Idea for acceleration

hep-ph/0510324 by T.Carli, G.Salam, F.Siegert

< ロ > < 同 > < 三 > < 三

• Replace integration by summation (MC integration):

$$\sigma = \sum_{x_1, x_2, Q^2} \mathcal{W}_{\hat{\sigma}} \cdot \mathcal{W}_{\text{PDF}}$$

- Bin $\hat{\sigma}$ in 2 dims $\Longrightarrow \mathcal{W}_{\hat{\sigma}}$
- Bin $f_i(x_1, Q_F^2)f_j(x_2, Q_F^2)$ in 3 dims $\Longrightarrow \mathcal{W}_{PDF}$
- Interpolate in between
- Pre-calculate $\mathcal{W}_{\hat{\sigma}}$ and use for fast evaluation/fitting of PDF

FastNLO

Accuracy of Grid interpolation

NLO@Grid Accuracy of Grid interpolation

Impact on gluon PDF

Defining jets

Motivation

- (Nearly) all physics signals are with jets:
 - VBF: Two forward "tag"-jets
 - gluinos: 4 jets + $E \neq$
- Large systematic uncertainties (steeply falling spectra)
- Need to define jet with good properties (better than "bunch of hadronic energy")

• • • • • • • • • • • •

Data from D0, PRL 94 (2005) 221801, plot by M.Zielinski

<ロ> <回> <回> <回> < 回> < 回>

F. Krauss High- Q^2 physics at the LHC 2

		Fitting PDFs	Defining Jets	Multijets	Underlying event	
D	efining	jets				
	Algorit	hms				
	• Co	ne algorithn	ns (iterative. r	midpoint)		

- Basic idea/algorithm
 - Find high E_T bins
 - Cone in ϕ - η around them with radius R
 - Cluster to jet (add momenta)
 - Differences in treatment of overlapping cones
- k⊥-algorithms Basic idea/algorithm
 - Define " k_{\perp} -metric" (with "radius" R)
 - Cluster until $k_{\perp}^{ij} \leq k_{\perp}^{crit}$

< 17 ► <

Defining jets

Work by D.Benedetti et al., in hep-ph/0604120

Criteria

• Angular distance α^i_{jp} :

 $\Delta R(p^i, j^i)$ of *i* th parton *p* to its jet *j*

• Energy difference β_{jp}^i :

Distance in σ from fitted curve

Defining jets: Testing the iterative cone-algorithm

Selected/well-clustered & selected events in $t\bar{t}H$

Defining jets: Testing the k_{\perp} -algorithm

Selected/well-clustered & selected events in $t\bar{t}H$

< 🗇 🕨

Multijets: Motivation

Central jet veto in VBF

- Signal/background ratio depends on central jet veto. (rapidity gap between two "tagging jets", ⇒ beautiful signal at leading order)
- But: How many jets come at higher orders?

イロト イ団ト イヨト イヨト

 \implies currently studied.

Multijets: Motivation

SUSY searches • Large $\sigma_{\rm prod}$

Many hard jets.

•
$$M_{\rm eff} = \sum p_{\perp}^{\rm hard}$$

Quick Discovery?

Introducing SHERPA

T.Gleisberg, S.Höche, F.K., A.Schälicke, S.Schumann and J.C.Winter, JHEP 0402 (2004) 056

- New event generator in C++;
- Matrix elements @ LO, combined with parton shower

(S.Catani *et al.* JHEP **0111** (2001) 063 F.K., JHEP **0208** (2002) 015);

- Hadronization by Pythia;
- Underlying event a la Pythia (old version), showers added.

Image: A math a math

p_{\perp} of Z-bosons in $p\bar{p} \rightarrow Z + X$ @ Tevatron

Data from CDF, Phys. Rev. Lett. 84 (2000) 845

F. Krauss High- Q^2 physics at the LHC

Jet spectra (1st jet) in $p\bar{p} \rightarrow Z + X$ @ Tevatron

(D0-Note 5066)

Jet spectra (2nd jet) in $p\bar{p} \rightarrow Z + X$ @ Tevatron

Jet spectra (3rd jet) in $p\bar{p} \rightarrow Z + X$ @ Tevatron

(D0-Note 5066)

- イロト イ団ト イヨト イヨト 三三 - わえで

$\phi_{1,\text{jet},2,\text{jet}}$ in $p\bar{p} \rightarrow Z + X$ @ Tevatron (D0-Note 5066) data wistat error data wistat & sys erro data wistat error of Events of Events data wistat & sys error erpa range stat ythia range stat 20 thia ranne stat & sv **D0 Runll Preliminary** II Preliminar ₹ ₹ Δ φ (jet,jet) Δ φ (jet,jet) Data / PYTHIA Data / SHERPA 43 4 3 2 0.2 L 0.2 0.5 1.5 2.5 0.5 Δ φ (jet,jet) ∆ ¢ (jet,jet)

TUD

F. Krauss High- Q^2 physics at the LHC TUD

Extrapolation to LHC: $p_{\perp}^{Z,\text{jet}}$ in Z+ jets

▲ロト ▲圖ト ▲画ト ▲画ト 三連 - 釣A@

F. Krauss High- Q^2 physics at the LHC

In the following: Data from CDF, PRD 65 (2002) 092002, plots partially from C.Buttar

F. Krauss High- Q^2 physics at the LHC

Compare 3 regions

p_{\perp} @ Tevatron, transverse

F. Krauss High-Q² physics at the LHC

... or is it rather this?

F. Krauss High- Q^2 physics at the LHC

In	troduction	Fitting PDFs	Defining Jets	Multijets	Underlying event	Summary

Summary

- Success of LHC probably depends on detailed understanding of QCD
- The first few years of LHC running are a great time for QCD-addicts
- There is leeway for an improved understanding of QCD on all levels between theory and experiment
- There are still puzzles and problems to be resolved -
 - from technicalities: sufficient precision in PDFs, jets and their definitions, multijets (a personal selection)
 - to basics:

underlying event, interplay of soft & hard QCD

イロト イポト イヨト イヨト