Recent developments in perturbative QCD

Gavin Salam LPTHE, Universities of Paris VI and VII and CNRS

DIS 2006, Tsukuba, Japan, 20 April 2006

🛏 talk by lancu

Concentrate on the effort to 'get QCD in shape for LHC era':

- Predicting multi-jet final-states: [because new-particle signatures involve many jets]
 - New tree level techniques
 - NLO and progress in 1-loop calculations
- Aiming for accuracy [because NLO theory is often far behind HERA/LEP precision]
 - NNLO jets: status & progress report
 - What NNLO is teaching us about QCD itself
- Other developments (mostly 'all-order' QCD)

Some recently very active fields, not covered:

- Small-x saturation
- Generalised parton distributions a field in its own right

 \rightarrow talk by Diehl, + hep-ph/0512201

Multi-jets	Tree level	NLO	Other results
Backgrounds to	Many jets	A few jets	
new physics	Low accuracy	Fair accuracy	
NNLO Precision QCD	NNLO Jets Status report	Structure of PT Mining for gold	MC Resummation

Developments in pQCD (G. Salam, LPTHE) p.4/29 Multi-jets Motivation, state of the art

All-hadronic (BR~46%, huge bckg) Juste – Lepton Photon '05

Heavy objects: multi-jet final-states

- Need to understand QCD multi-jet production (background)
- Max # jets: tree level \leq 8 jets

 ${\sf MadEvent}, {\sf AlpGen}, {\sf Helac}/{\sf Phegas}$

CompHEP, Grace, Amegic

# jets	$\#$ events for $10{ m fb}^{-1}$
3	9 · 10 ⁸
4	$7\cdot 10^7$
5	$6\cdot 10^6$
6	$3\cdot 10^5$
7	$2\cdot 10^4$
8	$2\cdot 10^3$

 $p_t(\text{jet}) > 60 \text{ GeV}, \ \theta_{ij} > 30 \text{ deg}, \ |y_{ij}| < 3$ Draggiotis, Kleiss & Papadopoulos '02 Developments in pQCD (G. Salam, LPTHE) p.5/29 Multi-jets Improving tree-level field theory

Tree level history

$$\mathcal{A}^{\text{tree}}(1, 2, \dots, n) = g^{n-2} \sum_{\text{perms}} \underbrace{\text{Tr}(T_1 T_2 \dots T_n)}_{\text{colour struct.}} \underbrace{\mathcal{A}^{\text{tree}}(1, 2, \dots, n)}_{\text{colour ordered amp.}}$$

Developments in pQCD (G. Salam, LPTHE) p.5/29 Multi-jets Improving tree-level field theory

Tree level history

$$\mathcal{A}^{\text{tree}}(1, 2, \dots, n) = g^{n-2} \sum_{perms} \underbrace{\text{Tr}(T_1 T_2 \dots T_n)}_{\text{colour struct.}} \underbrace{\mathcal{A}^{\text{tree}}(1, 2, \dots, n)}_{\text{colour ordered amp.}}$$

$$\begin{array}{c|c} & n & \# \text{ diags} & \# \text{ col-ord diags} \\ \hline 4 & 4 & 3 \\ 5 & 25 & 10 \\ 6 & 220 & 36 \\ 7 & 2485 & 133 \\ 8 & 34300 & 501 \\ 9 & 559405 & 1991 \\ 10 & 10525900 & 7335 \\ non-planar & planar \end{array}$$

Developments in pQCD (G. Salam, LPTHE) p.5/29 Multi-jets LImproving tree-level field theory

Tree level history

$$\mathcal{A}^{\text{tree}}(1,2,\ldots,n) = g^{n-2} \sum_{\text{perms}} \underbrace{\text{Tr}(T_1 T_2 \ldots T_n)}_{\text{colour struct.}} \underbrace{\mathcal{A}^{\text{tree}}(1,2,\ldots,n)}_{\text{colour ordered amp.}}$$

$$\underbrace{\frac{1}{4} + 2}_{\text{formation}} \underbrace{\frac{\text{Helicity amplitude: simplifies!}}{A^{\text{tree}}(--++\ldots)} = \frac{i\langle 12\rangle^4}{\langle 12\rangle\langle 23\rangle\ldots\langle n1\rangle}}_{\text{Parke & Taylor, Kunszt '85}}$$

$$\underbrace{\frac{1}{6} + 4}_{\text{Berends & Giele '88}}$$

Maximal Helicity Violating (MHV)

n

Developments in pQCD (G. Salam, LPTHE) p.5/29 Multi-jets LImproving tree-level field theory

Tree level history

$$\mathcal{A}^{\text{tree}}(1, 2, \dots, n) = g^{n-2} \sum_{\text{perms}} \underbrace{\text{Tr}(T_1 T_2 \dots T_n)}_{\text{colour struct.}} \underbrace{\mathcal{A}^{\text{tree}}(1, 2, \dots, n)}_{\text{colour ordered amp.}}$$

$$\overset{A_{n(-+\dots+--)=}{=} \underbrace{\frac{i}{(12)(23)\dots((n-2)(n-1)](n-2)(n-1)n[n1](12]}}_{S_{1,n-3}} \underbrace{\mathcal{A}^{\text{tree}}(1, 2, \dots, n)}_{S_{1,n-3}} \underbrace{\mathcal{A$$

NEXT to Maximal Helicity Violating (NMHV)

ľ

Kosower, '90

NEXT to Maximal Helicity Violating (NMHV)

Just one of vast array of results obtained with new recursion *(Twistor)* techniques.

Build multi-leg amplitudes by joining sub-amplitudes.

Berends Giele (1988): Join smaller off-shell amplitudes through a (colour-stripped) three or four-gluon vertex:

Why powerful?

Sub-amplitudes can be simplified *before* joining them together. Feynman diagrams, in contrast, can only be simplified after full calculation. Developments in pQCD (G. Salam, LPTHE) p.7/29 Multi-jets LImproving tree-level field theory

Britto-Cachazo-Feng (BCF): Join smaller sub-amplitudes by a *propagator*. Sub-amplitudes made *on-shell* by analytic continuation $(\pm z_j)$ of two reference momenta:

Britto, Cachazo & Feng hep-th/0412265; *idem*. + Witten hep-th/0501052 Earlier (related) rules: Cachazo, Svrcek & Witten hep-th/0403047

Proof based on analytic structure of tree-graphs (they are a sum of poles in complex plane) — *very general.*

Simplicity lies in on-shellness of sub-amplitudes and the need for just a scalar propagator to join them.

Developments in pQCD (G. Salam, LPTHE) p.8/29 Multi-jets LImproving tree-level field theory

Very active field: 200 articles in 2 years (\sim 50 by 'QCD people')

Tree level

- Specific compact results, including NNMHV Kosower '04;Roiban et al '04
 - Hints of yet deeper simplifications
- Efficient (recursive) formulations
 - ▶ NB: recall ∃ 'standard' numerical methods for tree-level calculations:

Berends-Giele ('88); 'Alpha' ('95)

Luo & Wen '05: Britto et al '05

Bena, Bern, Kosower '04

- Massless quarks, gluinos
- External Higgs boson
- External weak boson (& fermions)
- Collinear limits
- Massive quarks, scalars

Georgiou, Glover & Khoze '04; Wu & Zhu '04

Dixon/Badger, Glover & Khoze '04

Bern, Forde, Kosower & Mastrolia '04

Birthwright et al '05

Forde & Kosower '05; Schwinn & Weinzierl '06 Ferrario, Rodrigo & Talavera '06; Ozeren & Stirling '06

Amazing progress in short time...

Multi-jets	Tree level	NLO	Other results
Backgrounds to	Many jets	A few jets	
new physics	Low accuracy	Fair accuracy	
NNLO Precision QCD	NNLO Jets Status report	Structure of PT Mining for gold	MC Resummation

Developments in pQCD (G. Salam, LPTHE) p.11/29 Multi-jets New methods @ 1-loop

Wanted at NLO

Currently available

NLOJET++, MCFM, PHOX, ...

http://www.cedar.ac.uk/hepcode/

Experimenters' priorities

- 1. pp \rightarrow WW + jet Les Houches '05
- 2. pp \rightarrow H + 2 jets
 - Background to VBF Higgs production
- 3. pp $\rightarrow t\bar{t}b\bar{b}$
- 4. pp → tt̄ + 2 jets
 ▶ Background to tt̄H
- 5. pp \rightarrow WW $b\bar{b}$
- 6. pp \rightarrow V V + 2 jets
 - Background to $W W \rightarrow H \rightarrow W W$
- 7. pp \rightarrow V + 3 jets
 - General background to new physics

8. pp
$$\rightarrow$$
 V V V + jet

Background to SUSY trilepton

Developments in pQCD (G. Salam, LPTHE) p.11/29 Multi-jets New methods @ 1-loop

Wanted at NLO

Currently available

NLOJET++, MCFM, PHOX, ...

http://www.cedar.ac.uk/hepcode/

Experimenters' priorities

- 1. pp \rightarrow WW + jet Les Houches '05
- 2. pp \rightarrow H + 2 jets
 - Background to VBF Higgs production
- 3. pp $\rightarrow t\overline{t}b\overline{b}$
- 4. pp $\rightarrow t\bar{t} + 2$ jets • Background to $t\bar{t}H$
- 5. pp \rightarrow WW $b\overline{b}$
- 6. pp $\rightarrow VV + 2$ jets
 - Background to $W W \rightarrow H \rightarrow W W$
- 7. pp \rightarrow V + 3 jets
 - General background to new physics
- 8. pp $\rightarrow VVV + jet$
 - Background to SUSY trilepton

Currently available NLOJET++, MCFM, PHOX, ... http://www.cedar.ac.uk/hepcode/

Theorist's list (G. Heinrich)

- $2 \rightarrow 3$ (OK for a good student!)
 - $\blacktriangleright \ pp \to WW + jet$
 - $pp \rightarrow VVV$
 - $pp \rightarrow H + 2$ jets
- $2 \rightarrow 4$ (Beyond today's means)
 - pp \rightarrow 4 jets
 - pp $\rightarrow t\overline{t} + 2$ jets
 - pp $\rightarrow t\overline{t}b\overline{b}$
 - $pp \rightarrow V + 3 jets$
 - $pp \rightarrow VV + 2$ jets
 - $pp \rightarrow VVV + jet$
 - pp \rightarrow W W $b\bar{b}$

Experimenters' priorities

- 1. pp \rightarrow WW + jet Les Houches '05
- 2. pp \rightarrow H + 2 jets
 - Background to VBF Higgs production
- 3. pp $\rightarrow t\overline{t}b\overline{b}$
- 4. pp $\rightarrow t\bar{t} + 2$ jets • Background to $t\bar{t}H$
- 5. pp \rightarrow WW $b\overline{b}$
- 6. pp \rightarrow VV + 2 jets
 - Background to $W W \rightarrow H \rightarrow W W$
- 7. pp \rightarrow V + 3 jets
 - General background to new physics
- 8. pp $\rightarrow VVV + jet$
 - Background to SUSY trilepton

Two ways of doing this more efficiently:

Understand field theory better

Enormous progress on this in past two years: \sim 200 articles

Get a computer to do most of the work for you

Two ways of doing this more efficiently:

Understand field theory better

Enormous progress on this in past two years: \sim 200 articles

Get a computer to do most of the work for you

Two ways of doing this more efficiently:

Understand field theory better

Enormous progress on this in past two years: \sim 200 articles

► Get a computer to do most of the work for you

Two ways of doing this more efficiently:

Understand field theory better

Enormous progress on this in past two years: \sim 200 articles

Get a computer to do most of the work for you

Would like a relation that avoids need for loop integrations. *Various kinds* of recursion possible

1-loop

tree x 1-loop

tree x tree

Technically: loop diagrams have more complex analytic properties than trees (*cuts* as well as poles), so BCFW does not apply.

Complex problem, much progress made, many people involved.

Bedford, Bena, Bern, Bidder, Bjerrum-Bohr, Brandhuber, Britto, Cachazo, Del Duca, Dixon, Dunbar, Feng, Forde, Ita, Kosower, McNamara, Mastrolia, Perkins, Roiban, Spence, Travaglini, [...] Would like a relation that avoids need for loop integrations. *Various kinds* of recursion possible

1-loop

tree x 1-loop

tree x tree

Technically: loop diagrams have more complex analytic properties than trees (*cuts* as well as poles), so BCFW does not apply.

Complex problem, much progress made, many people involved.

Bedford, Bena, Bern, Bidder, Bjerrum-Bohr, Brandhuber, Britto, Cachazo, Del Duca, Dixon, Dunbar, Feng, Forde, Ita, Kosower, McNamara, Mastrolia, Perkins, Roiban, Spence, Travaglini, [...] Developments in pQCD (G. Salam, LPTHE) p.14/29 Multi-jets New methods @ 1-loop

6-gluon status via recursion

One ingredient of one of the "priority processes" $(pp \rightarrow 4 \text{ jets})$ is the 6-gluon 1-loop amplitude:

$$\mathcal{A}_{g} = \underbrace{(\mathcal{A}_{g} + 4\mathcal{A}_{f} + 3\mathcal{A}_{s})}_{\mathcal{N} = 4 \text{ SUSY}} - \underbrace{4(\mathcal{A}_{f} + \mathcal{A}_{s})}_{\mathcal{N} = 1 \text{ chiral SUSY}} + \underbrace{\mathcal{A}_{s}}_{\text{scalar}}$$

	$\mathcal{N}=4$	$\mathcal{N}=1$	S(c,d,e)	S (R)
A(++++)	BDDK94a	BDDK94b	BDDK94b	BDK05
A(-+-+++)	BDDK94a	BDDK94b	BBST04	
A(-++-++)	BDDK94a	BDDK94b	BBST04	
A(+++)	BDDK94b	BBDD04	BBDI05	Dixon05
A(+-++)	BDDK94b	BBCF05,BBDP04+5	BFM06	
A(-+-+)	BDDK94b	BBCF05,BBDP04+5	BFM06	

Table adapted from hep-ph/0603187; NB: many results go beyond 6 gluons

Promising + much progress made! But QCD loops are still far from having simplicity of the tree-level results...

Developments in pQCD (G. Salam, LPTHE) p.14/29 Multi-jets New methods @ 1-loop

6-gluon status via recursion

One ingredient of one of the "priority processes" $(pp \rightarrow 4 \text{ jets})$ is the 6-gluon 1-loop amplitude:

$$\mathcal{A}_{g} = \underbrace{(\mathcal{A}_{g} + 4\mathcal{A}_{f} + 3\mathcal{A}_{s})}_{\mathcal{N} = 4 \text{ SUSY}} - \underbrace{4(\mathcal{A}_{f} + \mathcal{A}_{s})}_{\mathcal{N} = 1 \text{ chiral SUSY}} + \underbrace{\mathcal{A}_{s}}_{\text{scalar}}$$

	$\mathcal{N}=4$	$\mathcal{N}=1$	S(c,d,e)	S (R)
A(++++)	BDDK94a	BDDK94b	BDDK94b	BDK05
A(-+-+++)	BDDK94a	BDDK94b	BBST04	
A(-++-++)	BDDK94a	BDDK94b	BBST04	
A(+++)	BDDK94b	BBDD04	BBDI05	Dixon05
A(+-++)	BDDK94b	BBCF05,BBDP04+5	BFM06	
A(-+-+)	BDDK94b	BBCF05,BBDP04+5	BFM06	

Table adapted from hep-ph/0603187; NB: many results go beyond 6 gluons

Promising + much progress made! But QCD loops are still far from having simplicity of the tree-level results...

Automation of loop calculations with Feynman diagram techniques:

- ► Get expressions for all Feynman graphs (QGRAF, FeynArts). This gives answer in terms of a set of *loop integrals*
- Use recursion relations to reexpress each loop integral in terms of a basis set of known standard integrals NB: recursion for integrals, not amplitudes!
 - Analytically with algebraic manipulation programs
 Binoth, Guillet, Heinrich, Pilon, Schubert '05; + others
 - Semi-numerically, "on the fly", Ellis, Giele, Glover, Zanderighi '04-05
 - Results unstable at special phase-space points (e.g. co-planar momenta): use dedicated strategies there.
- Alternative integration techniques: e.g. subtract out divergences before integrating, do rest numerically.

Nagy, Soper '03

Automation of loop calculations with Feynman diagram techniques:

- ► Get expressions for all Feynman graphs (QGRAF, FeynArts). This gives answer in terms of a set of *loop integrals*
- Use recursion relations to reexpress each loop integral in terms of a basis set of known standard integrals NB: recursion for integrals, not amplitudes!
 - Analytically with algebraic manipulation programs

Binoth, Guillet, Heinrich, Pilon, Schubert '05; + others

- Semi-numerically, "on the fly", Ellis, Giele, Glover, Zanderighi '04-05
- Results unstable at special phase-space points (e.g. co-planar momenta): use dedicated strategies there.
- Alternative integration techniques: e.g. subtract out divergences before integrating, do rest numerically.

Nagy, Soper '03

Automation of loop calculations with Feynman diagram techniques:

- ► Get expressions for all Feynman graphs (QGRAF, FeynArts). This gives answer in terms of a set of *loop integrals*
- Use recursion relations to reexpress each loop integral in terms of a basis set of known standard integrals NB: recursion for integrals, not amplitudes!
 - Analytically with algebraic manipulation programs

Binoth, Guillet, Heinrich, Pilon, Schubert '05; + others

- Semi-numerically, "on the fly", Ellis, Giele, Glover, Zanderighi '04-05
- Results unstable at special phase-space points (e.g. co-planar momenta): use dedicated strategies there.
- Alternative integration techniques: e.g. subtract out divergences before integrating, do rest numerically.

Nagy, Soper '03

 Full 6-gluon 1-loop amplitude! Ellis, Giele, Zanderighi '06 Only fully known 2 → 4 1-loop amplitude in QCD
 pp → H + 2 jets: amplitudes done, implementation into MCFM in progress Ellis, Campbell, Giele, Zanderighi, '05-06
 gg → WW via quark loop Binoth, Ciccolini, Kauer, Krämer '05
 Similar techniques in EW: e⁺e⁻ → 4 fermions Denner, Dittmaier, Roth, Wieders '05

> Automated techniques have advantage of flexibility But: speed can be issue in numerical variants.

> > NB: more 'traditional' NLO methods still important, +talk by Oleari

Multi-jets	Tree level	NLO	Other results
Backgrounds to	Many jets	A few jets	
new physics	Low accuracy	Fair accuracy	
NNLO Precision QCD	NNLO Jets Status report	Structure of PT Mining for gold	MC Resummation

- Processes with two QCD partons @ LO are mostly done
 - $e^+e^- \rightarrow$ hadrons, $\tau \rightarrow \nu +$ hadrons
 - DIS coeff. fns., sum rules
 - ▶ $pp \rightarrow W, Z, \gamma^*, H, WH, ZH$ (many including spin correl.)
- Next in line: $e^+e^- \rightarrow 3$ jets?
 - simplest!
 - α_s & other measurements at LEP are theory limited

theory uncertainty $\sim 3-4\times$ exp. error

- useful for studying perturbative/ non-perturbative interface.
- Then DIS \rightarrow 2 + 1 and $pp \rightarrow$ 2 jets...

NNLO bottleneck

NNLO bottleneck

"You have to do the integral, but you don't know the integrand" Anastasiou (KITP LoopFest III)

Subtraction:

Catani, Seymour '96 + earlier authors

- find an integrable function with same divergences as amplitudes
- subtract it from real
- add integrated version to virtuals.

Sector decomposition:

- split phase space into regions with at most one divergence each
- Introduce plus-prescription (i.e. as in splitting functions) to allow separate extraction of e⁻⁴,...e⁰.

"You have to do the integral, but you don't know the integrand"

Anastasiou (KITP LoopFest III)

Subtraction:

Catani, Seymour '96 + earlier authors

- find an integrable function with same divergences as amplitudes
- subtract it from real
- add integrated version to virtuals.

Sector decomposition:

- split phase space into regions with at most one divergence each
- Introduce plus-prescription (i.e. as in splitting functions) to allow separate extraction of $\epsilon^{-4}, \ldots \epsilon^{0}$.

"You have to do the integral, but you don't know the integrand"

Anastasiou (KITP LoopFest III)

Subtraction:

Catani, Seymour '96 + earlier authors

- find an integrable function with same divergences as amplitudes
- subtract it from real
- add integrated version to virtuals.

Sector decomposition:

- split phase space into regions with at most one divergence each
- Introduce plus-prescription (i.e. as in splitting functions) to allow separate extraction of e⁻⁴,...e⁰.

Binoth, Heinrich '00

NNLO progress

Subtraction

[Standard approach @ NLO]

► Applied to C_F^3 colour part of $e^+e^- \rightarrow 3$ jets $(\alpha_s C_F / 2\pi)^3$ piece of $\langle 1 - T \rangle = -20.4 \pm 4$

Gehrmann-de Ridder, Gehrmann & Glover '04

New: Full 'antenna' subtraction formulae recently published idem. '05
 stalk by Del Duca for alternative subtractions

Sector decomposition

• Applied to $pp \rightarrow W, Z, H$ (fully differential, spin correlations)

Anastasiou, Dixon, Melnikov, Petriello '03-06

New: partial $e^+e^- \rightarrow 3$ jets

Heinrich '06

Expect first full $e^+e^- \rightarrow 3$ jet results soon (end 2006)

NNLO progress

Subtraction

[Standard approach @ NLO]

► Applied to C_F^3 colour part of $e^+e^- \rightarrow 3$ jets $(\alpha_s C_F/2\pi)^3$ piece of $\langle 1 - T \rangle = -20.4 \pm 4$

Gehrmann-de Ridder, Gehrmann & Glover '04

New: Full 'antenna' subtraction formulae recently published idem. '05
 stalk by Del Duca for alternative subtractions

Sector decomposition

- ► Applied to $pp \rightarrow W, Z, H$ (fully differential, spin correlations) Anastasiou, Dixon, Melnikov, Petriello '03–06
- New: partial $e^+e^- \rightarrow 3$ jets

Heinrich '06

Expect first full $e^+e^- \rightarrow 3$ **jet results soon (end 2006)**

NNLO progress

Subtraction

[Standard approach @ NLO]

► Applied to C_F^3 colour part of $e^+e^- \rightarrow 3$ jets $(\alpha_s C_F/2\pi)^3$ piece of $\langle 1 - T \rangle = -20.4 \pm 4$

Gehrmann-de Ridder, Gehrmann & Glover '04

New: Full 'antenna' subtraction formulae recently published idem. '05
 stalk by Del Duca for alternative subtractions

Sector decomposition

- ► Applied to $pp \rightarrow W, Z, H$ (fully differential, spin correlations) Anastasiou, Dixon, Melnikov, Petriello '03–06
- New: partial $e^+e^- \rightarrow 3$ jets

Heinrich '06

Expect first full $e^+e^- \rightarrow 3$ **jet results soon (end 2006)**

(N)NLO is **useless** if

 Jet-algo is not IR safe

 CDF has *modified* midpoint cone New 'search-cone step' IR unsafe [discovered by Wobisch]

 Theory and experiment use different algorithms

 R_{sep} in NLO theory, but not data

 NB: 'NNLO-NLL' – rough apprx. of NNLO, ignorant of jet-algo

Good news:

- CDF also has k_t-algo result
 - Progress in making k_t -algo
 - faster/friendlier
 - Cacciari [➡talk] & GPS '05–06

```
Developments in pQCD (G. Salam, LPTHE) p.21/29

NNLO

NNLO jets
```


(N)NLO is **useless** if

Jet-algo is not IR safe
 CDF has *modified* midpoint cone
 New 'search-cone step' IR unsafe
 [discovered by Wobisch]

 Theory and experiment use different algorithms
 R_{sep} in NLO theory, but not dat

 NB: 'NNLO-NLL' – rough apprx. of NNLO, ignorant of jet-algo

Good news:

CDF also has k_t-algo result

 Progress in making k_t-algo faster/friendlier

Cacciari [⇒talk] & GPS '05–06

```
Developments in pQCD (G. Salam, LPTHE) p.21/29

NNLO

NNLO jets
```


(N)NLO is useless if

- Jet-algo is not IR safe
 CDF has *modified* midpoint cone
 New 'search-cone step' IR unsafe
 [discovered by Wobisch]
- Theory and experiment use different algorithms

 R_{sep} in NLO theory, but not data

 NB: 'NNLO-NLL' – rough apprx. of NNLO, ignorant of jet-algo

Good news:

CDF also has k_t-algo result

 Progress in making k_t-algo faster/friendlier
 Cacciari [\+talk] & GPS '05Developments in pQCD (G. Salam, LPTHE) p.21/29 NNLO NNLO jets

(N)NLO is **useless** if

- Jet-algo is not IR safe
 CDF has *modified* midpoint cone
 New 'search-cone step' IR unsafe
 [discovered by Wobisch]
- Theory and experiment use different algorithms

R_{sep} in NLO theory, but not data

 NB: 'NNLO-NLL' – rough apprx. of NNLO, ignorant of jet-algo

Good news:

- CDF also has k_t-algo result
- Progress in making k_t-algo faster/friendlier

Cacciari [➡talk] & GPS '05–06

Developments in pQCD (G. Salam, LPTHE) p.21/29 NNLO NNLO jets

(N)NLO is **useless** if

- Jet-algo is not IR safe
 CDF has *modified* midpoint cone
 New 'search-cone step' IR unsafe
 [discovered by Wobisch]
- Theory and experiment use different algorithms

R_{sep} in NLO theory, but not data

 NB: 'NNLO-NLL' – rough apprx. of NNLO, ignorant of jet-algo

Good news:

- CDF also has k_t-algo result
- Progress in making k_t-algo faster/friendlier

Cacciari [➡talk] & GPS '05–06

Multi-jets	Tree level	NLO	Other results
Backgrounds to	Many jets	A few jets	
new physics	Low accuracy	Fair accuracy	
NNLO Precision QCD	NNLO Jets Status report	Structure of PT Mining for gold	MC Resummation

- Next-to-Next-to-Leading Order Evolution of Non-Singlet Fragmentation Functions. By A. Mitov, S. Moch, A. Vogt. [hep-ph/0604053] DESY-06-036 (Apr 2006) 10p.
- Higher-order soft corrections to lepton pair and Higgs boson production. By S. Moch & A. Vogt. Phys.Lett.B631:48-57,2005. [hep-ph/0508265]
- Three-loop results for quark and gluon form-factors. By S. Moch, J.A.M. Vermaseren, A. Vogt. Phys.Lett.B625:245-252,2005. [hep-ph/0508055]
- The Quark form-factor at higher orders. By S. Moch, J.A.M. Vermaseren, A. Vogt. JHEP 0508:049,2005. [hep-ph/0507039]
- Higher-order corrections in threshold resummation. By S. Moch, J.A.M. Vermaseren, A. Vogt. Nucl.Phys.B726:317-335,2005. [hep-ph/0506288]
- The Third-order QCD corrections to deep-inelastic scattering by photon exchange. By J.A.M. Vermaseren, A. Vogt, S. Moch. Nucl.Phys.B724:3-182,2005. [hep-ph/0504242]
- The Longitudinal structure function at the third order. By S. Moch, J.A.M. Vermaseren, A. Vogt. Phys.Lett.B606:123-129,2005. [hep-ph/0411112]
- Three loop universal anomalous dimension of the Wilson operators in N=4 SUSY Yang-Mills model. By A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko, V.N. Velizhanin. Phys.Lett.B595:521-529,2004, Erratum-ibid.B632:754-756,2006. [hep-th/0404092]

Various unexpected structures in MVV results. E.g. at large x, can write $P_{ij}(x) = \frac{A}{(1-x)_{+}} + B \,\delta(1-x) + C \ln(1-x) + \mathcal{O}(1) , \quad A = \sum A_n (\alpha_s/4\pi)^n , \text{ etc.}$

Remarkably, different coefficients seem to be interrelated:

 $C_2 = A_1^2$ $C_3 = 2A_1A_2$ Curci, Furmanski, Petronzio '80
 MVV '04

 \exists a proposal that there is a more fundamental evolution equation with *a universal splitting function* appendix of Dokshitzer, Khoze, Troian '96

$$\partial_{\ln Q^2} D(x, Q^2) = \int_0^1 \frac{dz}{z} \mathcal{P}(x, \alpha_{\mathfrak{s}}(\frac{Q^2}{z})) D(\frac{x}{z}, z^{\sigma} Q^2) \quad \begin{cases} \sigma = 1 : & \text{time-like} \\ \sigma = -1 : & \text{space-like} \end{cases}$$

Postulate new universal splitting function ${\mathcal P}$ to be classical at large $x \Rightarrow$

 $C = A^2$ at all orders; get most of NNLL $\mathcal{O}(1)$ term too!

Dokshitzer, Marchesini, GPS '05

Various unexpected structures in MVV results. E.g. at large x, can write $P_{ij}(x) = \frac{A}{(1-x)_{+}} + B \,\delta(1-x) + C \ln(1-x) + \mathcal{O}(1) , \quad A = \sum A_n (\alpha_s/4\pi)^n , \text{ etc.}$

Remarkably, different coefficients seem to be interrelated:

$$C_2 = A_1^2$$
 $C_3 = 2A_1A_2$
 Curci, Furmanski, Petronzio '80
 MVV '04

 \exists a proposal that there is a more fundamental evolution equation with *a universal splitting function* appendix of Dokshitzer, Khoze, Troian '96

$$\partial_{\ln Q^2} D(x, Q^2) = \int_0^1 \frac{dz}{z} \mathcal{P}(x, \alpha_{\mathsf{s}}(\frac{Q^2}{z})) D(\frac{x}{z}, \mathbf{z}^{\sigma} Q^2) \quad \begin{cases} \sigma = 1 : & \text{time-like} \\ \sigma = -1 : & \text{space-like} \end{cases}$$

Postulate new universal splitting function \mathcal{P} to be classical at large $x \Rightarrow$

 $C = A^2$ at all orders; get most of NNLL $\mathcal{O}(1)$ term too!

Dokshitzer, Marchesini, GPS '05

Original aim of Dokshitzer was to understand difference between time-like ($\sigma=+1$) and space-like ($\sigma=-1$) splitting functions.

i.e. fragmentation function and splitting function evolution

Normally related at order n via:

$$\mathcal{P}_{\sigma=+1}^{(n)}(z) \iff \mathcal{P}_{\sigma=-1}^{(n)}(1/z)$$

Curci, Furmanski, Petronzio '80

Stratmann & Vogelsang '97

New universality: get difference at order n from result at order n-1

$$P_{\sigma=\pm1}^{(n-1)}(z) \implies P_{\sigma=+1}^{(n)}(z) - P_{\sigma=-1}^{(n)}(z)$$

For non-singlet NNLO: both approaches give same prediction for time-like case

Mitov, Moch, Vogt '06

Original aim of Dokshitzer was to understand difference between time-like $(\sigma = +1)$ and space-like $(\sigma = -1)$ splitting functions.

i.e. fragmentation function and splitting function evolution

Normally related at order n via:

$$\mathcal{P}^{(n)}_{\sigma=+1}(z) \iff \mathcal{P}^{(n)}_{\sigma=-1}(1/z)$$

Curci, Furmanski, Petronzio '80

Stratmann & Vogelsang '97

New universality: get difference at order n from result at order n-1

$$P_{\sigma=\pm1}^{(n-1)}(z) \implies P_{\sigma=+1}^{(n)}(z) - P_{\sigma=-1}^{(n)}(z)$$

For non-singlet NNLO: both approaches give same prediction for time-like case

Mitov, Moch, Vogt '06

Original aim of Dokshitzer was to understand difference between time-like $(\sigma = +1)$ and space-like $(\sigma = -1)$ splitting functions.

i.e. fragmentation function and splitting function evolution

Normally related at order n via:

$$P_{\sigma=+1}^{(n)}(z) \iff P_{\sigma=-1}^{(n)}(1/z)$$

Curci, Furmanski, Petronzio '80

Stratmann & Vogelsang '97

New universality: get difference at order n from result at order n-1

$$P_{\sigma=\pm1}^{(n-1)}(z) \implies P_{\sigma=+1}^{(n)}(z) - P_{\sigma=-1}^{(n)}(z)$$

For non-singlet NNLO: both approaches give same prediction for time-like case

Mitov, Moch, Vogt '06

Developments in pQCD (G. Salam, LPTHE) p.26/29 NNLO Mining for gold

- Many other "goodies" in the MVV papers (even more in supersymmetric limit)...
- ► In N = 4 SUSY Yang-Mills amplitudes, planar *n*-loop seems to be reducible just to powers of 1-loop:

$$\begin{split} \mathcal{M}_{n-leg}^{(2-loop)} &= \frac{1}{2} (\mathcal{M}_{n}^{(1)})^{2} + f(\epsilon) \mathcal{M}_{n}^{(1)}(2\epsilon) - \frac{\pi^{4}}{72} + \mathcal{O}\left(()\,\epsilon\right) \\ & 4\text{-legs: Anastasiou, Bern, Dixon, Kosowoer '03} \\ & 5\text{-legs: Cachazo, Spradlin, Volovich '06; Bern et al '06} \\ \text{NB: numerical loop calcs: Anastasiou & Daleo [>talk] '05 ; Czakon '05} \\ \mathcal{M}_{n-leg}^{(3-loop)} &= -\frac{1}{3} (\mathcal{M}_{n}^{(1)})^{3} + \mathcal{M}_{n}^{(1)}(\epsilon) \mathcal{M}_{n}^{(2)}(\epsilon) + f^{(3)}(\epsilon) \mathcal{M}_{n}^{(1)}(3\epsilon) + C^{(3)} + \mathcal{O}\left(\epsilon\right) \\ & 4\text{-legs: Bern, Dixon, Smirnov '05} \end{split}$$

In large-angle soft-colour resummation ('fifth form factor') for 2 → 2 scattering, symmetry in exch. of kinematic variables and # of colours:

$$\frac{\ln \frac{s^2}{ut} - 2\pi i}{\ln \frac{u}{t}} \iff N_C$$

Dokshitzer & Marchesini '05 (see also Seymour '05)

Multi-jets	Tree level	NLO	Other results		
Backgrounds to	Many jets	A few jets			
new physics	Low accuracy	Fair accuracy			
NNLO Precision QCD	NNLO Jets Status report	Structure of PT Mining for gold	MC Resummation		

Fixed order calculations

- 4-loop decoupling relations for α_s (i.e. heavy-quark thresholds)
 - Schroder & Steinhauser '05; Chetyrkin, Kuhn, Sturm, '05
- IR safety for jet flavour

Banfi, GPS [🛏 talk], Zanderighi '06

MC calculations

- ► Herwig++ \rightarrow adolescence ($pp \rightarrow$ DY), Ariadne++ \rightarrow Lönnblad's talk
- Steady progress in matching MC & NLO MC@NLO: Steady progress in matching MC & NLO MC@NLO: Frixione's talk alternative methods: Soper's, Nason's talks
- Using NNLL and NNLO for reweighting of event generators
 Davatz et al '04; Davatz

Analytical resummations:

- Collinear region (and threshold): $MVV \Rightarrow \alpha_s^n L^{n-2}$
- Generic large angle region, even $\alpha_s^n L^n$ much less well understood
 - Gaps-between-jets phenomenology Forshaw, Kyrieleis, Seymour '05-'06
 - ▶ Non-global: unanticipated new $\alpha_s^n L^n$ for jets Banfi & Dasgupta [→talk] '05

Banfi, GPS [> talk], Zanderighi '06

Fixed order calculations

• 4-loop decoupling relations for α_s (i.e. heavy-quark thresholds)

Schroder & Steinhauser '05; Chetyrkin, Kuhn, Sturm, '05

IR safety for jet flavour

MC calculations

- ► Herwig++ \rightarrow adolescence ($pp \rightarrow$ DY), Ariadne++ \blacktriangleright Lönnblad's talk
- ► Steady progress in matching MC & NLO MC@NLO: ➡Frixione's talk alternative methods: ➡Soper's, Nason's talks
- Using NNLL and NNLO for reweighting of event generators
 Davatz et al '04; Davatz et al '06

Analytical resummations:

- Collinear region (and threshold): $MVV \Rightarrow \alpha_s^n L^{n-2}$
- Generic large angle region, even $\alpha_s^n L^n$ much less well understood
 - Gaps-between-jets phenomenology Forshaw, Kyrieleis, Seymour '05-'06
 - ▶ Non-global: unanticipated new $\alpha_s^n L^n$ for jets Banfi & Dasgupta [→talk] '05

Banfi, GPS [> talk], Zanderighi '06

Fixed order calculations

• 4-loop decoupling relations for α_s (i.e. heavy-quark thresholds)

Schroder & Steinhauser '05; Chetyrkin, Kuhn, Sturm, '05

IR safety for jet flavour

MC calculations

- ► Herwig++ \rightarrow adolescence ($pp \rightarrow$ DY), Ariadne++ \blacktriangleright Lönnblad's talk
- Steady progress in matching MC & NLO MC@NLO: Steady progress in matching MC & NLO MC@NLO: Frixione's talk alternative methods: Soper's, Nason's talks
- Using NNLL and NNLO for reweighting of event generators
 Davatz et al '04: Davatz et al '06

Analytical resummations:

- Collinear region (and threshold): $MVV \Rightarrow \alpha_s^n L^{n-2}$
- Generic large angle region, even $\alpha_s^n L^n$ much less well understood
 - ► Gaps-between-jets phenomenology Forshaw, Kyrieleis, Seymour '05-'06
 - ▶ Non-global: unanticipated new $\alpha_s^n L^n$ for jets Banfi & Dasgupta [→talk] '05

- Twistors / amplitude-recursion: major theory advance starting to give very non-trivial results, especially for loops
 Many string theorists now thinking about QCD Some phenomenologists diverted into strings
- Automated 1-loop calculations are important complementary development.
 More flexible; crucial for cross-checks
- ▶ $e^+e^- \rightarrow 3$ jets at NNLO is on final stretch How much longer before DIS 2+1 and pp 2 → 2?
- Once NNLO is available, comparison to data is not the only thing to be done with it.
 Learn about structure in QCD
- Steady progress also for MC, resummations

Thanks to: Bern, Butterworth, P. Ciafaloni, Comelli, Dokshitzer, R.K. Ellis, Kosower, Lönnblad, Marchesini, Moretti, Seymour, Vogt, Webber

- Twistors / amplitude-recursion: major theory advance starting to give very non-trivial results, especially for loops
 Many string theorists now thinking about QCD Some phenomenologists diverted into strings
- Automated 1-loop calculations are important complementary development.
 More flexible; crucial for cross-checks
- ▶ $e^+e^- \rightarrow 3$ jets at NNLO is on final stretch How much longer before DIS 2+1 and pp 2 → 2?
- Once NNLO is available, comparison to data is not the only thing to be done with it.
 Learn about structure in QCD
- Steady progress also for MC, resummations

Thanks to: Bern, Butterworth, P. Ciafaloni, Comelli, Dokshitzer, R.K. Ellis, Kosower, Lönnblad, Marchesini, Moretti, Seymour, Vogt, Webber

EXTRA SLIDES

CPU time in seconds for the computation of the n gluon amplitude on a standard PC (2 GHz Pentium IV), summed over all helicities.

n	4	5	6	7	8	9	10	11	12
Berends-Giele	0.00005	0.00023	0.0009	0.003	0.011	0.030	0.09	0.27	0.7
CSW	0.00001	0.00040	0.0042	0.033	0.24	1.77	13	81	
BCF	0.00001	0.00007	0.0003	0.001	0.006	0.037	0.19	0.97	5.5

Dinsdale, Ternick & Weinzierl '06

Gain a factor of \sim 4 for moderate n — useful, not overwhelming. Slowly making it into phenomenological work NB: trees in MadEvent, ALPGEN, HELAC/PHEGAS, CompHEP, GRACE, Amegic \Rightarrow talk by Worek

But: real progress here is in discovery of new analytical structures in field theory (helpful also elsewhere, e.g. loops).

Supersymmetric decomposition (allow gluons, fermions and scalars in loops)

$$\mathcal{A}_{g} = \underbrace{(\mathcal{A}_{g} + 4\mathcal{A}_{f} + 3\mathcal{A}_{s})}_{\mathcal{N} = 4 \text{ SUSY}} - \underbrace{4(\mathcal{A}_{f} + \mathcal{A}_{s})}_{\mathcal{N} = 1 \text{ chiral SUSY}} + \underbrace{\mathcal{A}_{s}}_{\text{scalar}}$$

SUSY gives many cancellations. Most difficult piece is scalar.

Analytical structure involves coefficients (c, d, e) of standard boxes (I_4) , triangles (I_3) and bubbles (I_2) , and rational terms (R):

$$\mathcal{A}_s = \sum_i c_i I_4^i + \sum_i d_i I_3^i + \sum_i e_i I_2^i + R$$

 coefficients (c, d, e) can be (i) read off by merging trees (cut constructibility) (ii) obtained recursively (à la BCFW)

rational parts can be obtained recursively

Example of Giele-Glover method

$$\int \frac{d^{D_{\ell}} \ell^{\mu_{1}} \ell^{\mu_{2}}}{(\ell+q_{1})^{2} (\ell+q_{2})^{2} (\ell+q_{3})^{2} (\ell+q_{4})^{2}} \\ = \frac{1}{2} g^{\mu_{1}\mu_{2}} I(D+2;1,1,1,1) + 2q_{1}^{\mu_{1}} 2q_{1}^{\mu_{2}} I_{4}(D+4;3,1,1,1) + \dots$$

Then

$$2I_4(8;3,1,1,1) = -2\left(\sum_i S_{1i}^{-1}\right) I_4(8;2,1,1,1) - S_{11}^{-1}I_4(6;1,1,1,1) - S_{12}^{-1}I_3(6;1,0,1,1) - S_{13}^{-1}I_3(6;1,1,0,1) - S_{14}^{-1}I_3(6;1,1,1,0)$$

The $I_n(D; 1, 1, 1, 1)$ etc. are the basis integrals. S_{ij} is kinematical matrix, $S_{ij} = (q_i - q_j)^2$.

Reduction procedure done numerically for each kinematic configuration.

Cancelling NNLO divergences

How to get cancellations?

1. Subtraction method:

 $\int d^{D} \Phi_{5} M_{5} J(p_{1..5}) + \int d^{D} \Phi_{4} M_{4} J(p_{1..4}) + \dots$

Applied to $e^+e^- \rightarrow 2$ jets and C_F^3 colour part of $e^+e^- \rightarrow 3$ jets:

 $(lpha_{\sf s} C_{\sf F}/2\pi)^3$ piece of $\langle 1-T
angle = -20.4 \pm 4$

Gehrmann-De Ridder, Gehrmann & Glover '04

In principle all $e^+e^- \rightarrow 3$ jet 'antenna' subtraction pieces are ready — 'just' need to be coded! *idem.* '05

Cancelling NNLO divergences

How to get cancellations?

1. Subtraction method:

 $\int d^4 \Phi_5[M_5 J(p_{1..5}) - S_5 J(\tilde{p}_{1..3})] + \int d^4 \Phi_4[M_4 J(p_{1..4}) + S_4 J(\tilde{p}_{1..3})] + \dots$

Applied to $e^+e^- \rightarrow 2$ jets and C_F^3 colour part of $e^+e^- \rightarrow 3$ jets:

 $(\alpha_{\sf s} C_{\sf F}/2\pi)^3$ piece of $\langle 1-T \rangle = -20.4 \pm 4$

Gehrmann-De Ridder, Gehrmann & Glover '04

In principle all $e^+e^- \rightarrow 3$ jet 'antenna' subtraction pieces are ready — 'just' need to be coded! *idem.* '05

Cancelling NNLO divergences

How to get cancellations?

1. Subtraction method:

 $\int d^4 \Phi_5[M_5 J(p_{1..5}) - S_5 J(\tilde{p}_{1..3})] + \int d^4 \Phi_4[M_4 J(p_{1..4}) + S_4 J(\tilde{p}_{1..3})] + \dots$

Applied to $e^+e^- \rightarrow 2$ jets and C_F^3 colour part of $e^+e^- \rightarrow 3$ jets:

 $(\alpha_{s}C_{F}/2\pi)^{3}$ piece of $\langle 1 - T \rangle = -20.4 \pm 4$

Gehrmann-De Ridder, Gehrmann & Glover '04

In principle all $e^+e^- \rightarrow 3$ jet 'antenna' subtraction pieces are ready — 'just' need to be coded! *idem.* '05

1 → 5 @ Tree 1 → 4 @ 1-loop 1 → 3 @ 2-loop

Bottleneck

How to get cancellations?

2. Sector decomposition for isolating divergences Binoth & Heinrich '00

 $\int d^{D}\Phi_{5}M_{5}J(p_{1..5}) = \epsilon^{-4} \int d^{4}\Phi_{5}f_{-4}M_{5}J(p_{1..5}) + \dots + \int d^{4}\Phi_{5}f_{0}M_{5}J(p_{1..5})$

The f_{-i} involve plus-distributions of kinematic invariants. Each integral finite.

Applied to

- $e^+e^- \rightarrow 2$ jets
 Binoth & Heinrich '04; Anastasiou, Melnikov & Petriello '04
 $e^+e^- \rightarrow 3$ jets (partial)
 Heinrich '06
- $pp \rightarrow W, Z, H$ (fully exclusive) Anastasiou, Dixon, Melnikov & Petriello '04-06

1 → 5 @ Tree 1 -> 4 @ 1-loop 1 → 3 @ 2-loop Bottleneck

How to get cancellations?

2. Sector decomposition for isolating divergences Binoth & Heinrich '00

 $\int d^{D}\Phi_{5}M_{5}J(p_{1..5}) = \epsilon^{-4} \int d^{4}\Phi_{5}f_{-4}M_{5}J(p_{1..5}) + \dots + \int d^{4}\Phi_{5}f_{0}M_{5}J(p_{1..5})$

The f_{-i} involve plus-distributions of kinematic invariants. Each integral finite.

Applied to

- $\blacktriangleright e^+e^- \rightarrow 2$ jets Binoth & Heinrich '04; Anastasiou, Melnikov & Petriello '04
- ▶ $e^+e^- \rightarrow 3$ jets (partial) Heinrich '06
- ▶ $pp \rightarrow W, Z, H$ (fully exclusive) Anastasiou, Dixon, Melnikov & Petriello '04-06

EW is not so weak

Widely discussed for ILC. How about *pp*? e.g. NLO EW corrections to $pp \rightarrow Z + jet$ These are *significant* (even NNLO \sim few %) Maina Moretti Ross '04 Kulesza et al '04 QED effects $\leq 1\%$ Martin et al. Glosser et al

Fortran

- Matching to multi-parton LO matrix elements now widespread CKKW
- New, better shower in Pythia (k_{\perp} ordered)
- Underlying event models much improved / more practical
- Reaching end of line soon!

C++

base	d on ThePE	Independent			
Herwig++	Pythia 7	Ariadne/LDC Pythia 8		Sherpa	
ready for e^+e^-	cancelled	see talk by	being	ready for	
$pp \rightarrow DY$ ready		Lönnblad	coded	e^+e^- and pp	

Includes new, improved angularordered shower

New player! Dresden group

Pythia, Jimmy (Herwig)

Developments in pQCD (G. Salam, LPTHE) p.37/29 LExtras LAnalytical resummations Resummation ingredients summary

	Soft + collinear		Hard Collinear		Soft large angle		
order	incl.	hadr.	incl.	hadr.	incl.	global	NG
$\alpha_{s}^{n}L^{n+1}$	1	[√]+BSZ04	N.A.		N.A.		
$\alpha_{s}^{n}L^{n}$	\checkmark	[√]+BSZ04	1	\checkmark	\checkmark	[✔]	$[N_c \rightarrow \infty]$
$\alpha_{s}^{n}L^{n-1}$	MVV04	[FG04]	BCFG03	[FG04]	CFG+HK01	—	—
$\alpha_{s}^{n}L^{n-2}$	—	_	MVV05		MVV05	—	_

Large angle global $2 \rightarrow 2$ BKOS89–98; generic: BCMN03; $2 \rightarrow 3$ [partial] KS05Large angle NGhemisph./patch: DS01–02; k_t algo: AS02, BD05

$$\label{eq:linear} \begin{split} \checkmark &\equiv \mbox{historical results/techniques (< '01)} \quad [\ldots] \equiv \mbox{only for special cases} \\ \mbox{hadr.} \equiv \mbox{anything measuring hadrons} \qquad \mbox{NG} \equiv \mbox{non-global} \end{split}$$

AS: Appleby & Seymour; BCFG: Bozzi & CFG; BCMN: Bonciani, Catani, Mangano, Nason; BD: Banfi & Dasgupta; BKOS: Botts, Kidonakis, Oderda, Sterman; BSZ: Banfi, GPS & Zanderighi; CFG: Catani & FG; DS: Dasgupta & GPS; FG: de Florian & Grazzini; KS: Kyrieleis & Seymour; HK: Harlander & Kilgore. Best accuracies (NNLL) for most inclusive observables

Higgs transverse-mom. distribution. First differential NNLL resummation Resums $L \simeq \ln \frac{M_H}{Q_t}$ (for $gg \to H$) $\exp[\alpha_s^n L^{n+1} + \alpha_s^n L^n + \alpha_s^n L^{n-1}]$ Bozzi et al '03

- NNLL uncertainty ~ 7% (~NLL/2)
- Shape quite different from plain parton showering (Pythia)

 relevant for Higgs searches (gg → H → WW → ℓνℓν)?
 Davatz et al '04

Developments in pQCD (G. Salam, LPTHE) p.39/29 LExtras LAnalytical resummations

Gap resummations

How rare are gaps in $pp \rightarrow 2$ jets with big ΔY ?

Answer needs advanced tools

Non-global logarithms

- Appear for measurements of *part* of phase space
 Also e.g. dijet properties, Banfi & Dasgupta '03
- Only in large-N_c limit! Not automated! Connections to BFKL: Marchesini-Mueller '03; Weigert '03

Multi-jet structure

- Stony Brook soft-colour evolution
- Breakdown of 'probabilistic radiation'

Are Monte Carlos up to the job? Unknown...

