Recent developments in perturbative QCD

Gavin Salam
LPTHE, Universities of Paris VI and VII and CNRS

DIS 2006, Tsukuba, Japan, 20 April 2006

Introduction

Concentrate on the effort to 'get QCD in shape for LHC era':

- Predicting multi-jet final-states:
[because new-particle signatures involve many jets]
- New tree level techniques
- NLO and progress in 1-loop calculations
- Aiming for accuracy [because NLO theory is often far behind HERA/LEP precision]
- NNLO jets: status \& progress report
- What NNLO is teaching us about QCD itself
- Other developments (mostly 'all-order' QCD)

Some recently very active fields, not covered:

- Small-x saturation
\Rightarrow talk by lancu
- Generalised parton distributions - a field in its own right
\Leftrightarrow talk by Diehl, + hep-ph/0512201

Multi-jet final-states

$t \bar{t}$ decay modes

All-hadronic
(BR~46\%, huge bckg) Juste - Lepton Photon '05

Heavy objects: multi-jet final-states

- Need to understand QCD multi-jet production (background)
- Max \# jets: tree level ≤ 8 jets

MadEvent,AlpGen,Helac/Phegas
CompHEP,Grace,Amegic

$\#$ jets	\# events for $10 \mathrm{fb}^{-1}$
3	$9 \cdot 10^{8}$
4	$7 \cdot 10^{7}$
5	$6 \cdot 10^{6}$
6	$3 \cdot 10^{5}$
7	$2 \cdot 10^{4}$
8	$2 \cdot 10^{3}$

$p_{t}($ jet $)>60 \mathrm{GeV}, \theta_{i j}>30 \mathrm{deg},\left|y_{i j}\right|<3$
Draggiotis, Kleiss \& Papadopoulos '02

$$
\mathcal{A}^{\text {tree }}(1,2, \ldots, n)=g^{n-2} \sum_{\text {perms }} \underbrace{\operatorname{Tr}\left(T_{1} T_{2} \ldots T_{n}\right)}_{\text {colour struct. }} \underbrace{A^{\text {tree }}(1,2, \ldots, n)}_{\text {colour ordered amp. }}
$$

$$
\mathcal{A}^{\text {tree }}(1,2, \ldots, n)=g^{n-2} \sum_{\text {perms }} \underbrace{\operatorname{Tr}\left(T_{1} T_{2} \ldots T_{n}\right)}_{\text {colour struct. }} \underbrace{A^{\text {tree }}(1,2, \ldots, n)}_{\text {colour ordered amp. }}
$$

$$
\mathcal{A}^{\text {tree }}(1,2, \ldots, n)=g^{n-2} \sum_{\text {perms }} \underbrace{\operatorname{Tr}\left(T_{1} T_{2} \ldots T_{n}\right)}_{\text {colour struct. }} \underbrace{A^{\text {tree }}(1,2, \ldots, n)}_{\text {colour ordered amp. }}
$$

Helicity amplitude: simplifies!

$$
A^{\text {tree }}(--++\ldots)=\frac{i\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle}
$$

Parke \& Taylor, Kunszt '85 Berends \& Giele '88

Maximal Helicity Violating (MHV)

Tree level history

LImproving tree-level field theory

$$
\mathcal{A}^{\text {tree }}(1,2, \ldots, n)=g^{n-2} \sum_{\text {perms }} \underbrace{\operatorname{Tr}\left(T_{1} T_{2} \ldots T_{n}\right)}_{\text {colour struct. }} \underbrace{A^{\text {tree }}(1,2, \ldots, n)}_{\text {colour ordered amp. }}
$$

NEXT to Maximal Helicity Violating (NMHV)

$$
\begin{align*}
& A_{n}(-+\cdots+--)= \\
& =\frac{i}{\langle 12)(23) \cdots\langle(n-2)(n-1))[(n-2)(n-1)][(n-1) n][n 1][12]} \\
& \times\left(\frac{(n-1 n)\langle 12\rangle[(n-1)(n-2)]\left\langle(n-1)^{-}\right| K_{-}\left|2^{-}\right\rangle^{2}}{S_{3, n-1}}+\frac{(1 n)\langle(n-1)(n-2)\rangle[12]\left\langle 1^{-}\right| K_{-}\left|(n-2)^{-}\right\rangle^{2}}{S_{1, n-3}}\right. \\
& +\frac{(n(n-1)\rangle\langle 1(n-1)\rangle\langle 1(n-2))[1 n][12][(n-1)(n-2)]\left\langle 1^{-}\right| K_{-}\left|(n-2)^{-}\right\rangle}{S_{1, n-3}} \\
& +\frac{(n 1)\langle(n-1) 1\rangle((n-1) 2\rangle[(n-1) n][12][(n-1)(n-2)]\left\langle(n-1)^{-}\right| K_{-}\left|2^{-}\right\rangle}{S_{3, n-1}} \\
& -\langle 1(n-1)\rangle^{2} S_{2, n-2}[12]\left[(n-1)(n-2) \left\lvert\,-\frac{(n-1 n)(1 n)(1(n-1)\rangle\left\langle 1^{-}\right| K_{-}\left|(n-2)^{-}\right\rangle[12]}{S_{1, n-3}}\right.\right. \\
& -[n 1][n(n-1)][12][(n-1)(n-2)] \\
& \times \sum_{l=3}^{n-3}\left[\frac{\langle n(n-1)\rangle^{2}\langle(n-1) 1\rangle\left\langle 1^{-}\right| \not_{1, l-1} k_{l}\left|1^{+}\right\rangle}{S_{1, l-1} S_{1, l}}\right. \\
& +\frac{\langle n 1\rangle^{2}\langle 1(n-1)\rangle\left\langle(n-1)^{-}\right| K_{1+1, n-1} k_{l}\left|(n-1)^{+}\right\rangle}{S_{l+1, n-1} S_{l, n-1}} \\
& -\frac{\langle n 1\rangle\langle n(n-1)\rangle\langle(n-1) 1\rangle\left\langle(n-1)^{-}\right| K_{1+1, n} k_{1}\left|1^{+}\right\rangle}{S_{1,1} S_{l, n-1}} \\
& -\frac{\langle n 1\rangle\langle n(n-1)\rangle^{2}\left\langle(n-1)^{-}\right| K_{l+1, n} k_{l}\left|1^{+}\right\rangle\left\langle 1^{-}\right| K_{l, n}\left|n^{-}\right\rangle}{S_{1,1-1} S_{1, i} S_{l, n-1}} \\
& \left.\left.-\frac{\langle n 1\rangle^{2}\langle n(n-1)\rangle\left\langle(n-1)^{-}\right| F_{l+1, n-1} k_{l}\left|1^{+}\right\rangle\left\langle(n-1)^{-}\right| F_{l+1, n}\left|n^{-}\right\rangle}{S_{1, i} S_{l+1, n-1} S_{l, n-1}}\right]\right) \tag{5.2}
\end{align*}
$$

$$
\mathcal{A}^{\text {tree }}(1,2, \ldots, n)=g^{n-2} \sum_{\text {perms }} \underbrace{\operatorname{Tr}\left(T_{1} T_{2} \ldots T_{n}\right)}_{\text {colour struct. }} \underbrace{A^{\text {tree }}(1,2, \ldots, n)}_{\text {colour ordered amp. }}
$$

NEXT to Maximal Helicity Violating (NMHV)

Helicity amplitude: simplifies!

$$
\begin{aligned}
& A^{\text {tree }}(---++\ldots)= \\
& \qquad \begin{array}{l}
\frac{1}{F_{3,1}} \sum_{j=4}^{n-1} \frac{\langle 1| P_{2, j} P_{j+1,2}|3\rangle}{P_{2, j}^{2} P_{j+1,2}^{2}} \times \\
\frac{\langle j+1 j\rangle}{\left.\left[2\left|P_{2, j}\right| j+1\right\rangle\langle j| P_{j+1,2} \mid 2\right]}
\end{array}
\end{aligned}
$$

Britto et al., hep-th/0503198
Just one of vast array of results obtained with new recursion (Twistor) techniques.

Old recursion relations

Build multi-leg amplitudes by joining sub-amplitudes.
Berends Giele (1988): Join smaller off-shell amplitudes through a (colour-stripped) three or four-gluon vertex:

This is basis of many tree-level multi-particle Monte Carlo programs.

Why powerful?
Sub-amplitudes can be simplified before joining them together.
Feynman diagrams, in contrast, can only be simplified after full calculation.

Britto-Cachazo-Feng (BCF): Join smaller sub-amplitudes by a propagator. Sub-amplitudes made on-shell by analytic continuation ($\pm z_{j}$) of two reference momenta:

Britto, Cachazo \& Feng hep-th/0412265; idem. + Witten hep-th/0501052 Earlier (related) rules: Cachazo, Svrcek \& Witten hep-th/0403047

Proof based on analytic structure of tree-graphs (they are a sum of poles in complex plane) - very general.

Simplicity lies in on-shellness of sub-amplitudes and the need for just a scalar propagator to join them.

Very active field: 200 articles in 2 years (~ 50 by 'QCD people')

Tree level

- Specific compact results, including NNMHV Kosower '04;Roiban et al '04
- Hints of yet deeper simplifications Luo \& Wen '05; Britto et al '05
- Efficient (recursive) formulations

Bena, Bern, Kosower '04

- NB: recall \exists 'standard' numerical methods for tree-level calculations:

Berends-Giele ('88); 'Alpha' ('95)

- Massless quarks, gluinos

Georgiou, Glover \& Khoze '04; Wu \& Zhu '04

- External Higgs boson

Dixon/Badger, Glover \& Khoze '04

- External weak boson (\& fermions) Bern, Forde, Kosower \& Mastrolia '04
- Collinear limits

Birthwright et al '05

- Massive quarks, scalars

Forde \& Kosower '05; Schwinn \& Weinzierl '06 Ferrario, Rodrigo \& Talavera '06; Ozeren \& Stirling '06

Amazing progress in short time...

Currently available

NLOJET++, MCFM, PHOX, ...
http://www.cedar.ac.uk/hepcode/

Experimenters' priorities

production

- Background to

- General background to new physics

Currently available
NLOJET++, MCFM, PHOX, ...
http://www.cedar.ac.uk/hepcode/

Experimenters' priorities

1. $\mathrm{pp} \rightarrow \mathrm{WW}+$ jet Les Houches ' 05
2. $\mathrm{pp} \rightarrow \mathrm{H}+2$ jets

- Background to VBF Higgs production

3. $\mathrm{pp} \rightarrow t \bar{t} b \bar{b}$
4. $\mathrm{pp} \rightarrow t \bar{t}+2$ jets

- Background to $t \bar{t} \mathrm{H}$

5. $\mathrm{pp} \rightarrow \mathrm{WW} b \bar{b}$
6. $\mathrm{pp} \rightarrow \mathrm{VV}+2$ jets

- Background to $W W \rightarrow H \rightarrow W W$

7. $\mathrm{pp} \rightarrow \mathrm{V}+3$ jets

- General background to new physics

8. $\mathrm{pp} \rightarrow \mathrm{VVV}+$ jet

- Background to SUSY trilepton

Wanted at NLO

Currently available
NLOJET++, MCFM, PHOX, ...
http://www.cedar.ac.uk/hepcode/
Theorist's list (G. Heinrich)

- $2 \rightarrow 3$ (OK for a good student!)
- pp $\rightarrow \mathrm{WW}+$ jet
- $\mathrm{pp} \rightarrow \mathrm{VVV}$
- $\mathrm{pp} \rightarrow \mathrm{H}+2$ jets
- $2 \rightarrow 4$ (Beyond today's means)
- pp $\rightarrow 4$ jets
- $\mathrm{pp} \rightarrow t \bar{t}+2$ jets
- $\mathrm{pp} \rightarrow t \bar{t} b \bar{b}$
- $\mathrm{pp} \rightarrow \mathrm{V}+3$ jets
- $\mathrm{pp} \rightarrow \mathrm{VV}+2$ jets
- $\mathrm{pp} \rightarrow \mathrm{VVV}+$ jet
- $\mathrm{pp} \rightarrow \mathrm{WW} b \bar{b}$

Experimenters' priorities

1. $\mathrm{pp} \rightarrow \mathrm{WW}+$ jet Les Houches ' 05
2. $\mathrm{pp} \rightarrow \mathrm{H}+2$ jets

- Background to VBF Higgs production

3. $\mathrm{pp} \rightarrow t \bar{t} b \bar{b}$
4. $\mathrm{pp} \rightarrow t \bar{t}+2$ jets

- Background to $t \bar{t} \mathrm{H}$

5. $\mathrm{pp} \rightarrow \mathrm{WW} b \bar{b}$
6. $\mathrm{pp} \rightarrow \mathrm{VV}+2$ jets

- Background to $W W \rightarrow H \rightarrow W W$

7. $\mathrm{pp} \rightarrow \mathrm{V}+3$ jets

- General background to new physics

8. $\mathrm{pp} \rightarrow \mathrm{VVV}+$ jet

- Background to SUSY trilepton

$$
2 \rightarrow 3 @ N L O \sim \underbrace{\sim}_{2 \rightarrow 4 \text { @ Tree }}+\begin{gathered}
\text { Tricks to cancel } \\
\text { divergences }
\end{gathered}
$$

Traditionally: 1-loop for $2 \rightarrow 3$ proc. takes $1-2$ years

Two ways of doing this more efficiently:
Inderstand fiald theory better

Traditionally: 1-loop for $2 \rightarrow 3$ proc. takes $1-2$ years
Two ways of doing this more efficiently:

- Understand field theory better

Enormous progress on this in past two years: ~ 200 articles

- Get a computer to do most of the work for you

First full $2 \rightarrow 4$ (6-leg) result obtained this way

Traditionally: 1-loop for $2 \rightarrow 3$ proc. takes $1-2$ years
Two ways of doing this more efficiently:

- Understand field theory better

Enormous progress on this in past two years: ~ 200 articles

- Get a computer to do most of the work for you

First full $2 \rightarrow 4$ (6-leg) result obtained this way

Would like a relation that avoids need for loop integrations. Various kinds of recursion possible

1-loop
$\stackrel{?}{=}$

tree x 1-loop

tree x tree

Technically: loop diagrams have more complex analytic properties than trees (cuts as well as poles), so BCFW does not apply.

Complex problem, much progress made, many people involved Bedford, Bena, Bern, Bidder, Bjerrum-Bohr, Brandhuber, Britto, Cachazo, Del Duca, Dixon, Dunbar, Feng, Forde, Ita, Kosower, McNamara, Mastrolia, Perkins, Roiban, Spence, Travaglini, [...]

Recursion for loops?

Would like a relation that avoids need for loop integrations. Various kinds of recursion possible

1-loop

Technically: loop diagrams have more complex analytic properties than trees (cuts as well as poles), so BCFW does not apply.

Complex problem, much progress made, many people involved.
Bedford, Bena, Bern, Bidder, Bjerrum-Bohr, Brandhuber, Britto, Cachazo, Del Duca, Dixon, Dunbar, Feng, Forde, Ita, Kosower, McNamara, Mastrolia, Perkins, Roiban, Spence, Travaglini, [...]

Developments in pQCD (G. Salam, LPTHE) p.14/29
Multi-jets

- New methods © 1-loop

6-gluon status via recursion

One ingredient of one of the "priority processes" ($p p \rightarrow 4$ jets) is the 6-gluon 1-loop amplitude:

$$
\mathcal{A}_{g}=\underbrace{\left(\mathcal{A}_{g}+4 \mathcal{A}_{f}+3 \mathcal{A}_{s}\right)}_{\mathcal{N}=4 \text { SUSY }}-\underbrace{4\left(\mathcal{A}_{f}+\mathcal{A}_{s}\right)}_{\mathcal{N}=1 \text { chiral SUSY }}+\underbrace{\mathcal{A}_{s}}_{\text {scalar }}
$$

	$\mathcal{N}=4$	$\mathcal{N}=1$	$S(c, d, e)$	$S(R)$
$A(--++++)$	BDDK94a	BDDK94b	BDDK94b	BDK05
$A(-+-+++)$	BDDK94a	BDDK94b	BBST04	
$A(-++-++)$	BDDK94a	BDDK94b	BBST04	
$A(---+++)$	BDDK94b	BBDD04	BBDI05	Dixon05
$A(--+-++)$	BDDK94b	BBCF05,BBDP04+5	BFM06	
$A(-+-+-+)$	BDDK94b	BBCF05,BBDP04+5	BFM06	

Table adapted from hep-ph/0603187; NB: many results go beyond 6 gluons

6-gluon status via recursion

One ingredient of one of the "priority processes" ($p p \rightarrow 4$ jets) is the 6-gluon 1-loop amplitude:

$$
\mathcal{A}_{g}=\underbrace{\left(\mathcal{A}_{g}+4 \mathcal{A}_{f}+3 \mathcal{A}_{s}\right)}_{\mathcal{N}=4 \text { SUSY }}-\underbrace{4\left(\mathcal{A}_{f}+\mathcal{A}_{s}\right)}_{\mathcal{N}=1 \text { chiral SUSY }}+\underbrace{\mathcal{A}_{s}}_{\text {scalar }}
$$

	$\mathcal{N}=4$	$\mathcal{N}=1$	$S(c, d, e)$	$S(R)$
$A(--++++)$	BDDK94a	BDDK94b	BDDK94b	BDK05
$A(-+-+++)$	BDDK94a	BDDK94b	BBST04	
$A(-++-++)$	BDDK94a	BDDK94b	BBST04	
$A(---+++)$	BDDK94b	BBDD04	BBDI05	Dixon05
$A(--+-++)$	BDDK94b	BBCF05,BBDP04+5	BFM06	
$A(-+-+-+)$	BDDK94b	BBCF05,BBDP04+5	BFM06	

Table adapted from hep-ph/0603187; NB: many results go beyond 6 gluons
Promising + much progress made! But QCD loops are still far from having simplicity of the tree-level results...

Automation of loop calculations with Feynman diagram techniques:

- Get expressions for all Feynman graphs (QGRAF, FeynArts). This gives answer in terms of a set of loop integrals

Use recursion relations to reexpress each loop integral in terms of a basis set of known standard integrals - Analytically with algebraic manipulation programs - Semi-numerically, "on the fly", - Results unstable at special phase-space points (e.g. co-planar momenta) use dedicated strategies there.

Automation of loop calculations with Feynman diagram techniques:

- Get expressions for all Feynman graphs (QGRAF, FeynArts). This gives answer in terms of a set of loop integrals
- Use recursion relations to reexpress each loop integral in terms of a basis set of known standard integrals NB: recursion for integrals, not amplitudes!
- Analytically with algebraic manipulation programs

Binoth, Guillet, Heinrich, Pilon, Schubert '05; + others

- Semi-numerically, "on the fly",

Ellis, Giele, Glover, Zanderighi '04-05

- Results unstable at special phase-space points (e.g. co-planar momenta): use dedicated strategies there.

Automation of loop calculations with Feynman diagram techniques:

- Get expressions for all Feynman graphs (QGRAF, FeynArts). This gives answer in terms of a set of loop integrals
- Use recursion relations to reexpress each loop integral in terms of a basis set of known standard integrals NB: recursion for integrals, not amplitudes!
- Analytically with algebraic manipulation programs

Binoth, Guillet, Heinrich, Pilon, Schubert '05; + others

- Semi-numerically, "on the fly",

Ellis, Giele, Glover, Zanderighi '04-05

- Results unstable at special phase-space points (e.g. co-planar momenta): use dedicated strategies there.
- Alternative integration techniques: e.g. subtract out divergences before integrating, do rest numerically.

Automated loops: applications

- Full 6-gluon 1-loop amplitude!

Ellis, Giele, Zanderighi '06
Only fully known $2 \rightarrow 4$ 1-loop amplitude in QCD

- $p p \rightarrow H+2$ jets: amplitudes done, implementation into MCFM in progress

Ellis, Campbell, Giele, Zanderighi, '05-06

- $g g \rightarrow W W$ via quark loop Binoth, Ciccolini, Kauer, Krämer '05
- Similar techniques in EW: $e^{+} e^{-} \rightarrow 4$ fermions

Denner, Dittmaier, Roth, Wieders '05

Automated techniques have advantage of flexibility But: speed can be issue in numerical variants.

NB: more 'traditional' NLO methods still important, \Rightarrow talk by Oleari

- Processes with two QCD partons © LO are mostly done
- $e^{+} e^{-} \rightarrow$ hadrons, $\tau \rightarrow \nu+$ hadrons
- DIS coeff. fns., sum rules
- $p p \rightarrow W, Z, \gamma^{*}, H, W H, Z H$ (many including spin correl.)
- Next in line: $e^{+} e^{-} \rightarrow 3$ jets?
- simplest!
- α_{s} \& other measurements at LEP are theory limited
theory uncertainty $\sim 3-4 \times$ exp. error
- useful for studying perturbative/ non-perturbative interface.
- Then DIS $\rightarrow 2+1$ and $p p \rightarrow 2$ jets...

Tricks to cancel divergences

NNLO bottleneck

"You have to do the integral, but you don't know the integrand"
Anastasiou (KITP LoopFest III)
\square - Introduce plus-prescription (i.e. as in splitting functions) to allow separate

"You have to do the integral, but you don't know the integrand"
Anastasiou (KITP LoopFest III)

- Subtraction:
- find an integrable function with same divergences as amplitudes
- subtract it from real
- add integrated version to virtuals.
- split phase space into regions with at most one divergence each - Introduce plus-prescription (i.e. as in splitting functions) to allow separate extraction of $\epsilon^{-4}, \ldots \epsilon^{0}$.

"You have to do the integral, but you don't know the integrand"
- Subtraction:
- find an integrable function with same divergences as amplitudes
- subtract it from real
- add integrated version to virtuals.
- Sector decomposition:

Binoth, Heinrich '00

- split phase space into regions with at most one divergence each
- Introduce plus-prescription (i.e. as in splitting functions) to allow separate extraction of $\epsilon^{-4}, \ldots \epsilon^{0}$.

Subtraction

- Applied to C_{F}^{3} colour part of $e^{+} e^{-} \rightarrow 3$ jets

$$
\left(\alpha_{\mathrm{s}} C_{F} / 2 \pi\right)^{3} \text { piece of }\langle 1-T\rangle=-20.4 \pm 4
$$

Gehrmann-de Ridder, Gehrmann \& Glover '04

- New: Full 'antenna’ subtraction formulae recently published idem. '05
\Rightarrow talk by Del Duca for alternative subtractions

Sector decomposition
= Applied to $p p \rightarrow W^{\prime}, Z, H$ (fully differential, spin correlations)

Subtraction

[Standard approach @ NLO]

- Applied to C_{F}^{3} colour part of $e^{+} e^{-} \rightarrow 3$ jets

$$
\left(\alpha_{\mathrm{s}} C_{F} / 2 \pi\right)^{3} \text { piece of }\langle 1-T\rangle=-20.4 \pm 4
$$

Gehrmann-de Ridder, Gehrmann \& Glover '04

- New: Full 'antenna’ subtraction formulae recently published idem. '05
\Rightarrow talk by Del Duca for alternative subtractions
Sector decomposition
- Applied to $p p \rightarrow W, Z, H$ (fully differential, spin correlations) Anastasiou, Dixon, Melnikov, Petriello '03-06
- New: partial $e^{+} e^{-} \rightarrow 3$ jets

Subtraction

- Applied to C_{F}^{3} colour part of $e^{+} e^{-} \rightarrow 3$ jets

$$
\left(\alpha_{\mathrm{s}} C_{F} / 2 \pi\right)^{3} \text { piece of }\langle 1-T\rangle=-20.4 \pm 4
$$

Gehrmann-de Ridder, Gehrmann \& Glover '04

- New: Full 'antenna’ subtraction formulae recently published idem. '05
\Leftrightarrow talk by Del Duca for alternative subtractions
Sector decomposition
- Applied to $p p \rightarrow W, Z, H$ (fully differential, spin correlations) Anastasiou, Dixon, Melnikov, Petriello '03-06
- New: partial $e^{+} e^{-} \rightarrow 3$ jets

Expect first full $e^{+} e^{-} \rightarrow 3$ jet results soon (end 2006)

Cone-jets: misuse

(N)NLO is useless if

 Jet-algo is not IR safe
Cone-jets: misuse

$(\mathrm{N}) \mathrm{NLO}$ is useless if

- Jet-algo is not IR safe

CDF has modified midpoint cone New 'search-cone step' IR unsafe [discovered by Wobisch]

- Theory and experiment use different algorithms

$(\mathrm{N}) \mathrm{NLO}$ is useless if
- Jet-algo is not IR safe

CDF has modified midpoint cone New 'search-cone step' IR unsafe [discovered by Wobisch]

- Theory and experiment use different algorithms
$R_{\text {sep }}$ in NLO theory, but not data

Cone-jets: misuse

(N)NLO is useless if

- Jet-algo is not IR safe

CDF has modified midpoint cone New 'search-cone step' IR unsafe [discovered by Wobisch]

- Theory and experiment use different algorithms
$R_{\text {sep }}$ in NLO theory, but not data
- NB: 'NNLO-NLL’ - rough apprx. of NNLO, ignorant of jet-algo

Good news:
CDF also has k_{t}-algo result

Cone-jets: misuse

(N)NLO is useless if

- Jet-algo is not IR safe

CDF has modified midpoint cone New 'search-cone step' IR unsafe [discovered by Wobisch]

- Theory and experiment use different algorithms
$R_{\text {sep }}$ in NLO theory, but not data
- NB: 'NNLO-NLL’ - rough apprx. of NNLO, ignorant of jet-algo

Good news:

- CDF also has k_{t}-algo result
- Progress in making k_{t}-algo faster/friendlier

Cacciari $[\rightarrow$ talk] \& GPS '05-06

Year 2 after MVV NNLO $P_{i j}$

1. Next-to-Next-to-Leading Order Evolution of Non-Singlet Fragmentation Functions. By A. Mitov, S. Moch, A. Vogt. [hep-ph/0604053] DESY-06-036 (Apr 2006) 10p.
2. Higher-order soft corrections to lepton pair and Higgs boson production. By S. Moch \& A. Vogt. Phys.Lett.B631:48-57,2005. [hep-ph/0508265]
3. Three-loop results for quark and gluon form-factors. By S. Moch, J.A.M.

Vermaseren, A. Vogt. Phys.Lett.B625:245-252,2005. [hep-ph/0508055]
4. The Quark form-factor at higher orders. By S. Moch, J.A.M. Vermaseren, A. Vogt. JHEP 0508:049,2005. [hep-ph/0507039]
5. Higher-order corrections in threshold resummation. By S. Moch, J.A.M. Vermaseren, A. Vogt. Nucl.Phys.B726:317-335,2005. [hep-ph/0506288]
6. The Third-order QCD corrections to deep-inelastic scattering by photon exchange. By J.A.M. Vermaseren, A. Vogt, S. Moch. Nucl.Phys.B724:3-182,2005. [hep-ph/0504242]
7. The Longitudinal structure function at the third order. By S. Moch, J.A.M. Vermaseren, A. Vogt. Phys.Lett.B606:123-129,2005. [hep-ph/0411112]
8. Three loop universal anomalous dimension of the Wilson operators in $\mathrm{N}=4$ SUSY Yang-Mills model. By A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko, V.N. Velizhanin. Phys.Lett.B595:521-529,2004, Erratum-ibid.B632:754-756,2006. [hep-th/0404092]

Various unexpected structures in MVV results. E.g. at large x, can write $P_{i j}(x)=\frac{A}{(1-x)_{+}}+B \delta(1-x)+C \ln (1-x)+\mathcal{O}(1), \quad A=\sum A_{n}\left(\alpha_{s} / 4 \pi\right)^{n}$, etc.

Remarkably, different coefficients seem to be interrelated:

- $C_{2}=A_{1}^{2}$
- $C_{3}=2 A_{1} A_{2}$

Curci, Furmanski, Petronzio '80
MVV '04

Postulate new universal splitting function \mathcal{P} to be classical at large $x \Rightarrow$ $C=A^{2}$ at all orders; get most of NMLL \mathcal{O} (1) term too!

Hidden structure

Various unexpected structures in MVV results. E.g. at large x, can write $P_{i j}(x)=\frac{A}{(1-x)_{+}}+B \delta(1-x)+C \ln (1-x)+\mathcal{O}(1), \quad A=\sum A_{n}\left(\alpha_{s} / 4 \pi\right)^{n}$, etc.

Remarkably, different coefficients seem to be interrelated:

- $C_{2}=A_{1}^{2}$

Curci, Furmanski, Petronzio '80

- $C_{3}=2 A_{1} A_{2}$

MVV '04
\exists a proposal that there is a more fundamental evolution equation with a universal splitting function appendix of Dokshitzer, Khoze, Troian '96

$$
\partial_{\ln Q^{2}} D\left(x, Q^{2}\right)=\int_{0}^{1} \frac{d z}{z} \mathcal{P}\left(x, \alpha_{\mathrm{s}}\left(\frac{Q^{2}}{z}\right)\right) D\left(\frac{x}{z}, z^{\sigma} Q^{2}\right) \quad \begin{cases}\sigma=1: & \text { time-like } \\ \sigma=-1: & \text { space-like }\end{cases}
$$

Postulate new universal splitting function \mathcal{P} to be classical at large $x \Rightarrow$

$$
C=A^{2} \text { at all orders; get most of NNLL } \mathcal{O}(1) \text { term too! }
$$

Original aim of Dokshitzer was to understand difference between time-like ($\sigma=+1$) and space-like ($\sigma=-1$) splitting functions.
i.e. fragmentation function and splitting function evolution

Normally related at order n via:

$$
P_{\sigma=+1}^{(n)}(z) \Longleftrightarrow P_{\sigma=-1}^{(n)}(1 / z)
$$

Curci, Furmanski, Petronzio '80
Stratmann \& Vogelsang '97
New universality: get difference at order n from result at order $n-1$

Original aim of Dokshitzer was to understand difference between time-like ($\sigma=+1$) and space-like ($\sigma=-1$) splitting functions.
i.e. fragmentation function and splitting function evolution

Normally related at order n via:

$$
P_{\sigma=+1}^{(n)}(z) \Longleftrightarrow P_{\sigma=-1}^{(n)}(1 / z)
$$

Curci, Furmanski, Petronzio '80 Stratmann \& Vogelsang '97

New universality: get difference at order n from result at order $n-1$

$$
P_{\sigma= \pm 1}^{(n-1)}(z) \Longrightarrow P_{\sigma=+1}^{(n)}(z)-P_{\sigma=-1}^{(n)}(z)
$$

Original aim of Dokshitzer was to understand difference between time-like ($\sigma=+1$) and space-like ($\sigma=-1$) splitting functions.
i.e. fragmentation function and splitting function evolution

Normally related at order n via:

$$
P_{\sigma=+1}^{(n)}(z) \Longleftrightarrow P_{\sigma=-1}^{(n)}(1 / z)
$$

Curci, Furmanski, Petronzio '80 Stratmann \& Vogelsang '97

New universality: get difference at order n from result at order $n-1$

$$
P_{\sigma= \pm 1}^{(n-1)}(z) \Longrightarrow P_{\sigma=+1}^{(n)}(z)-P_{\sigma=-1}^{(n)}(z)
$$

For non-singlet NNLO: both approaches give same prediction for time-like case

Mitov, Moch, Vogt '06

- Many other "goodies" in the MVV papers (even more in supersymmetric limit)...
- In $\mathcal{N}=4$ SUSY Yang-Mills amplitudes, planar n-loop seems to be reducible just to powers of 1-loop:

$$
M_{n-\operatorname{leg}}^{(2-\operatorname{loop})}=\frac{1}{2}\left(M_{n}^{(1)}\right)^{2}+f(\epsilon) M_{n}^{(1)}(2 \epsilon)-\frac{\pi^{4}}{72}+\mathcal{O}(() \epsilon)
$$

4-legs: Anastasiou, Bern, Dixon, Kosowoer '03
5-legs: Cachazo, Spradlin, Volovich '06; Bern et al '06
NB: numerical loop calcs: Anastasiou \& Daleo [$\boldsymbol{\rightarrow}$ talk] '05; Czakon '05

$$
M_{n-\log }^{(3-\text { loo })}=-\frac{1}{3}\left(M_{n}^{(1)}\right)^{3}+M_{n}^{(1)}(\epsilon) M_{n}^{(2)}(\epsilon)+f^{(3)}(\epsilon) M_{n}^{(1)}(3 \epsilon)+C^{(3)}+\mathcal{O}(\epsilon)
$$

4-legs: Bern, Dixon, Smirnov '05

- In large-angle soft-colour resummation ('fifth form factor') for $2 \rightarrow 2$ scattering, symmetry in exch. of kinematic variables and \# of colours:

$$
\frac{\ln \frac{s^{2}}{u t}-2 \pi i}{\ln \frac{u}{t}} \Longleftrightarrow N_{C}
$$

Dokshitzer \& Marchesini '05 (see also Seymour '05)

Some other results of note

Fixed order calculations

- 4-loop decoupling relations for α_{s} (i.e. heavy-quark thresholds)

Schroder \& Steinhauser '05; Chetyrkin, Kuhn, Sturm, '05

- IR safety for jet flavour Banfi, GPS [$\boldsymbol{\rightarrow}$ talk], Zanderighi '06

MC calculations
Herwig++ \rightarrow adolescence ($p p \rightarrow$ DY), Ariadne++
Steady progress in matching MC \& NLO

Using NNLL and NNLO for reweighting of event generators

Some other results of note

Fixed order calculations

- 4-loop decoupling relations for α_{s} (i.e. heavy-quark thresholds)

Schroder \& Steinhauser '05; Chetyrkin, Kuhn, Sturm, '05

- IR safety for jet flavour Banfi, GPS [$\boldsymbol{\rightarrow}$ talk], Zanderighi '06

MC calculations

- Herwig++ \rightarrow adolescence ($p p \rightarrow$ DY), Ariadne++ $\quad \rightarrow$ Lönnblad's talk
- Steady progress in matching MC \& NLO

MC@NLO: \bullet Frixione's talk alternative methods: \Rightarrow Soper's, Nason's talks

- Using NNLL and NNLO for reweighting of event generators

Davatz et al '04; Davatz et al '06

Analytical resummations:

Some other results of note

Fixed order calculations

- 4-loop decoupling relations for α_{s} (i.e. heavy-quark thresholds)

Schroder \& Steinhauser '05; Chetyrkin, Kuhn, Sturm, '05

- IR safety for jet flavour

Banfi, GPS [$\boldsymbol{\rightarrow}$ talk], Zanderighi '06
MC calculations

- Herwig++ \rightarrow adolescence ($p p \rightarrow$ DY), Ariadne++ $\quad \rightarrow$ Lönnblad's talk
- Steady progress in matching MC \& NLO

MC@NLO: \bullet Frixione's talk alternative methods: \Rightarrow Soper's, Nason's talks

- Using NNLL and NNLO for reweighting of event generators

Davatz et al '04; Davatz et al '06
Analytical resummations:

- Collinear region (and threshold): $\mathrm{MVV} \Rightarrow \alpha_{\mathrm{s}}^{n} L^{n-2}$
- Generic large angle region, even $\alpha_{\mathrm{s}}^{n} L^{n}$ much less well understood
- Gaps-between-jets phenomenology

Forshaw, Kyrieleis, Seymour '05-'06

- Non-global: unanticipated new $\alpha_{\mathrm{s}}^{n} L^{n}$ for jets \quad Banfi \& Dasgupta $[\omega$ talk] '05

Conclusions

- Twistors / amplitude-recursion: major theory advance - starting to give very non-trivial results, especially for loops

Many string theorists now thinking about QCD Some phenomenologists diverted into strings

- Automated 1-loop calculations are important complementary development.

More flexible; crucial for cross-checks

- $e^{+} e^{-} \rightarrow 3$ jets at NNLO is on final stretch How much longer before DIS $2+1$ and pp $2 \rightarrow 2$?
- Once NNLO is available, comparison to data is not the only thing to be done with it.
- Steady progress also for MC, resummations

Conclusions

- Twistors / amplitude-recursion: major theory advance - starting to give very non-trivial results, especially for loops

Many string theorists now thinking about QCD Some phenomenologists diverted into strings

- Automated 1-loop calculations are important complementary development.

More flexible; crucial for cross-checks

- $e^{+} e^{-} \rightarrow 3$ jets at NNLO is on final stretch How much longer before DIS $2+1$ and pp $2 \rightarrow 2$?
- Once NNLO is available, comparison to data is not the only thing to be done with it.
- Steady progress also for MC, resummations

Thanks to: Bern, Butterworth, P. Ciafaloni, Comelli, Dokshitzer, R.K. Ellis, Kosower, Lönnblad, Marchesini, Moretti, Seymour, Vogt, Webber

EXTRA SLIDES

Practical impact of twistors?

CPU time in seconds for the computation of the n gluon amplitude on a standard PC (2 GHz Pentium IV), summed over all helicities.

n	4	5	6	7	8	9	10	11	12
Berends-Giele	0.00005	0.00023	0.0009	0.003	0.011	0.030	0.09	0.27	0.7
CSW	0.00001	0.00040	0.0042	0.033	0.24	1.77	13	81	-
BCF	0.00001	0.00007	0.0003	0.001	0.006	0.037	0.19	0.97	5.5

Dinsdale, Ternick \& Weinzierl '06
Gain a factor of ~ 4 for moderate $n-$ useful, not overwhelming.
Slowly making it into phenomenological work
NB: trees in MadEvent, ALPGEN, HELAC/PHEGAS, CompHEP, GRACE, Amegic
\Rightarrow talk by Worek
But: real progress here is in discovery of new analytical structures in field theory (helpful also elsewhere, e.g. loops).

Supersymmetric decomposition (allow gluons, fermions and scalars in loops)

$$
\mathcal{A}_{g}=\underbrace{\left(\mathcal{A}_{g}+4 \mathcal{A}_{f}+3 \mathcal{A}_{s}\right)}_{\mathcal{N}=4 \text { SUSY }}-\underbrace{4\left(\mathcal{A}_{f}+\mathcal{A}_{s}\right)}_{\mathcal{N}=1 \text { chiral SUSY }}+\underbrace{\mathcal{A}_{s}}_{\text {scalar }}
$$

SUSY gives many cancellations. Most difficult piece is scalar.
Analytical structure involves coefficients (c, d, e) of standard boxes $\left(I_{4}\right)$, triangles $\left(I_{3}\right)$ and bubbles (I_{2}), and rational terms (R) :

$$
\mathcal{A}_{s}=\sum_{i} c_{i} l_{4}^{i}+\sum_{i} d_{i} l_{3}^{i}+\sum_{i} e_{i} l_{2}^{i}+R
$$

- coefficients (c,d,e) can be (i) read off by merging trees (cut constructibility) (ii) obtained recursively (à la BCFW)
- rational parts can be obtained recursively

Example of Giele-Glover method

$$
\begin{aligned}
& \int \frac{d^{D} \ell \ell^{\mu_{1}} \ell^{\mu_{2}}}{\left(\ell+q_{1}\right)^{2}\left(\ell+q_{2}\right)^{2}\left(\ell+q_{3}\right)^{2}\left(\ell+q_{4}\right)^{2}} \\
& \quad=\frac{1}{2} g^{\mu_{1} \mu_{2}} I(D+2 ; 1,1,1,1)+2 q_{1}^{\mu_{1}} 2 q_{1}^{\mu_{2}} I_{4}(D+4 ; 3,1,1,1)+\ldots
\end{aligned}
$$

Then

$$
\begin{aligned}
2 I_{4}(8 ; 3,1,1,1)=- & 2\left(\sum_{i} S_{1 i}^{-1}\right) I_{4}(8 ; 2,1,1,1) \\
& \quad-S_{11}^{-1} I_{4}(6 ; 1,1,1,1)-S_{12}^{-1} I_{3}(6 ; 1,0,1,1) \\
& \quad-S_{13}^{-1} I_{3}(6 ; 1,1,0,1)-S_{14}^{-1} I_{3}(6 ; 1,1,1,0)
\end{aligned}
$$

The $I_{n}(D ; 1,1,1,1)$ etc. are the basis integrals. $S_{i j}$ is kinematical matrix, $S_{i j}=\left(q_{i}-q_{j}\right)^{2}$.
Reduction procedure done numerically for each kinematic configuration.

How to get cancellations?

1. Subtraction method:

$$
\int d^{D} \Phi_{5} M_{5} J\left(p_{1 . .5}\right)+\int d^{D} \Phi_{4} M_{4} J\left(p_{1 . .4}\right)+\ldots
$$

How to get cancellations?

1. Subtraction method:

$$
\int d^{4} \Phi_{5}\left[M_{5} J\left(p_{1 . .5}\right)-\mathcal{S}_{5} J\left(\tilde{p}_{1 . .3}\right)\right]+\int d^{4} \Phi_{4}\left[M_{4} J\left(p_{1 . .4}\right)+\mathcal{S}_{4} J\left(\tilde{p}_{1.3}\right)\right]+\ldots
$$

Applied to $e^{+} e^{-} \rightarrow 2$ jets and C_{F}^{3} colour part of $e^{+} e^{-} \rightarrow 3$ jets:

Cancelling NNLO divergences

How to get cancellations?

1. Subtraction method:

$$
\int d^{4} \Phi_{5}\left[M_{5} J\left(p_{1 . .5}\right)-\mathcal{S}_{5} J\left(\tilde{p}_{1 . .3}\right)\right]+\int d^{4} \Phi_{4}\left[M_{4} J\left(p_{1 . .4}\right)+\mathcal{S}_{4} J\left(\tilde{p}_{1.3}\right)\right]+\ldots
$$

Applied to $e^{+} e^{-} \rightarrow 2$ jets and C_{F}^{3} colour part of $e^{+} e^{-} \rightarrow 3$ jets:

$$
\left(\alpha_{\mathrm{s}} C_{F} / 2 \pi\right)^{3} \text { piece of }\langle 1-T\rangle=-20.4 \pm 4
$$

Gehrmann-De Ridder, Gehrmann \& Glover '04
In principle all $e^{+} e^{-} \rightarrow 3$ jet 'antenna' subtraction pieces are ready 'just' need to be coded!

Cancelling NNLO divergences

How to get cancellations?

2. Sector decomposition for isolating divergences

$$
\int d^{D} \Phi_{5} M_{5} J\left(p_{1 . .5}\right)=\epsilon^{-4} \int d^{4} \Phi_{5} f_{-4} M_{5} J\left(p_{1 . .5}\right)+\cdots+\int d^{4} \Phi_{5} f_{0} M_{5} J\left(p_{1 . .5}\right)
$$

The f_{-i} involve plus-distributions of kinematic invariants. Each integral finite.

Cancelling NNLO divergences

How to get cancellations?

2. Sector decomposition for isolating divergences

$$
\int d^{D} \Phi_{5} M_{5} J\left(p_{1 . .5}\right)=\epsilon^{-4} \int d^{4} \Phi_{5} f_{-4} M_{5} J\left(p_{1 . .5}\right)+\cdots+\int d^{4} \Phi_{5} f_{0} M_{5} J\left(p_{1 . .5}\right)
$$

The f_{-i} involve plus-distributions of kinematic invariants. Each integral finite.

Applied to
$-e^{+} e^{-} \rightarrow 2$ jets
Binoth \& Heinrich '04; Anastasiou, Melnikov \& Petriello '04

- $e^{+} e^{-} \rightarrow 3$ jets (partial)

Heinrich '06

- $p p \rightarrow W, Z, H$ (fully exclusive) Anastasiou, Dixon, Melnikov \& Petriello '04-06

EW is not so weak

Widely discussed for ILC. How about pp?
e.g. NLO EW corrections to $p p \rightarrow Z+$ jet

These are significant (even NNLO ~ few \%)
Maina Moretti Ross '04
Kulesza et al '04
QED effects $\lesssim 1 \%$
Martin et al.
Glosser et al

Fortran

- Matching to multi-parton LO matrix elements now widespread
- New, better shower in Pythia (k_{\perp} ordered)
- Underlying event models much improved / more practical
- Reaching end of line soon!

Pythia, Jimmy (Herwig)

C++

based on ThePEG			Independent	
Herwig++	Pythia 7	Ariadne/LDC	Pythia 8	Sherpa
$\begin{aligned} & \text { ready for } e^{+} e^{-} \\ & p p \rightarrow D Y \text { ready } \end{aligned}$	cancelled	see talk by Lönnblad	being coded	$\begin{gathered} \text { ready for } \\ e^{+} e^{-} \text {and } p p \end{gathered}$
cludes new, mproved angularrdered shower				Dresden group

Resummation ingredients summary

	Soft + collinear		Hard Collinear			Soft large angle			
order	incl.	hadr.	incl.	hadr.	incl.	global	NG		
$\alpha_{s}^{n} L^{n+1}$	\checkmark	$[\checkmark]+$ BSZ04	N.A.			N.A.			
$\alpha_{s}^{n} L^{n}$	\checkmark	$[\checkmark]+$ BSZ04	\checkmark	\checkmark	\checkmark	$[\checkmark]$	$\left[N_{c} \rightarrow \infty\right]$		
$\alpha_{s}^{n} L^{n-1}$	MVV04	[FG04]	BCFG03	[FG04]	CFG+HK01	-	-		
$\alpha_{s}^{n} L^{n-2}$	-	-	MVV05	-	MVV05	-	-		

Large angle global | $2 \rightarrow 2$ BKOS89-98; generic: BCMN03; $2 \rightarrow 3$ [partial] KS05 |
| :--- | :--- | Large angle NG \quad hemisph./patch: DS01-02; k_{t} algo: AS02, BD05

$\checkmark \equiv$ historical results/techniques $(<' 01) \quad[\ldots] \equiv$ only for special cases hadr. \equiv anything measuring hadrons NG \equiv non-global

AS: Appleby \& Seymour; BCFG: Bozzi \& CFG; BCMN: Bonciani, Catani, Mangano, Nason; BD: Banfi \& Dasgupta; BKOS: Botts, Kidonakis, Oderda, Sterman; BSZ: Banfi, GPS \& Zanderighi; CFG: Catani \& FG; DS: Dasgupta \& GPS; FG: de Florian \& Grazzini; KS: Kyrieleis \& Seymour; HK: Harlander \& Kilgore.

NNLL resummations

Best accuracies (NNLL) for most inclusive observables

Higgs transverse-mom. distribution.
First differential NNLL resummation Resums $L \simeq \ln \frac{M_{H}}{Q_{t}}($ for $g g \rightarrow H)$

$$
\exp \left[\alpha_{\mathrm{s}}^{n} L^{n+1}+\alpha_{\mathrm{s}}^{n} L^{n}+\alpha_{\mathrm{s}}^{n} L^{n-1}\right]
$$

Bozzi et al '03

- NNLL uncertainty $\sim 7 \%$ (~NLL/2)
- Shape quite different from plain parton showering (Pythia)

— relevant for Higgs searches
$(g g \rightarrow H \rightarrow W W \rightarrow \ell \nu \ell \nu)$? Davatz et al '04

Gap resummations

-Analytical resummations
How rare are gaps in $p p \rightarrow 2$ jets with big ΔY ?

Answer needs advanced tools

Non-global logarithms

- Appear for measurements of part of phase space Also e.g. dijet properties, Banfi \& Dasgupta '03
- Only in large- N_{c} limit! Not automated!

Connections to BFKL: Marchesini-Mueller '03; Weigert '03

Multi-jet structure

- Stony Brook soft-colour evolution
- Breakdown of 'probabilistic radiation'

Are Monte Carlos up to the job? Unknown. . .

