CERN-DESY Workshop HERA and the LHC

A workshop on the implications of HERA for LHC physics

June 6-9, 2006 at CERN

WG1: pdf WG2: multi-jet final states, energy flows WG3: Heavy quarks WG4: Diffraction WG5: MC tools

M. Cacciari H. Spiesberger A. Dainese A. Geiser

see http://www.desy.de/~heralhc/

Summary of the Heavy Flavour Working Group

Uri Karshon (Weizmann) Ingo Schienbein (SMU Dallas) Paul Thompson (Birmingham)

DIS 2006, April 24, 2006

Heavy Flavour WG: theory talks

Ingo Schienbein (SMU Dallas)

- Heavy flavour schemes
 - Inclusive (Thorne, Tung)
 - 1-particle inclusive (Kniehl)

- Evolution of FFs with heavy quark thresholds (Cacciari)
- Heavy quark fragmentation (Oleari)
- Heavy quark production at RHIC (Cacciari)
- Heavy quarks and kT-factorization (Zotov, Peters)
- Charmonium production: CEM vs. NRQCD (Lee)

Heavy flavour schemes

• Used in global analysis at NNLO!

FFN and ZM-VFN **at hadron level.** Overlap subtracted, thus similar to GM-VFN (but different in spirit).

A GM-VFNS at NNLO

Robert Thorne hep-ph/0601245

The only existing detailed proposal for a GM-VFN at NNLO Again: GM-VFN mandatory for fully global PDF analysis!

1.) Matching conditions (ZM-VFN or GM-VFN):

 $f_i^{n+1}(\mu) = A_{ik}(\mu) \otimes f_k^n(\mu); \text{NNLO} : A_{ik}(\mu = m) \neq 0$

2.)Def. of GM-VFN: require for Observable $O[S^n](\mu) = O[S^{n+1}](\mu)$

3.)Exploit **freedom to reshuffle m^2/Q^2 terms** between coefficients to ensure **continous and smooth** behaviour. Along with **ordering of the series** below and above threshold Pretty complicated!!! (sophisticated **and** complicated)

How to compute hard scattering cross sections for other processes???

Heavy flavour schemes

Heavy Quark Mass Effects and Heavy Flavor Parton Distributions <u>Tung</u>,Belyaev,Pumplin, Stump,Yuan

- General Mass (GM) formalism (Collins) NLO-implementation: S-ACOT_{χ}
- GM global analysis vs HERA I charm production
- Phenom. study of charm in the nucleon:
 Usually assumed that charm produced purely radiatively by gluon splitting. Important to test and quantify!

GM global analysis and HERA I Charm Production data

Goodness-of-fit vs. input non-perturbative Charm momentum fraction

The appropriate value for $\Delta \chi^2$ in the current global analysis environment has not yet been investigated. Hence, the value for the allowed charm mom. frac. should be taken as indicative only.

Charm and Gluon Distributions at Q = 1.3 GeV

Horizontal axis is scaled in $x^{1/3}$ —inbetween linear and log— in order to exhibit the behavior at both large and small x.

Charm and Gluon Distributions at $Q^2 = 10 \text{ GeV}^2$

Varying amounts of input lightcone charm components (à la Brodsky etal.) : Momentum frac. at Q0 = 0 - 0.02.

* Two-component charm distr. is apparent! (The radiatively generated component is represented by C6C0I (black) curve.

Charm and Gluon Distributions at $Q^2 = (85 \text{ GeV})^2$

Varying amounts of input lightcone charm components (à la Brodsky etal.) : Momentum frac. at Q0 = 0 - 0.02.

* Very substantial amount of charm, over the radiatively generated component (C6C0I), still persists at this very large scale \rightarrow there can be interesting phenomenological consequences even at LHC.

Heavy flavour schemes: One-particle inclusive case

<u>Kniehl</u>,Kramer, IJS,Spiesberger

D meson production in a GM-VFN

hep-ph/0508129

- For the same reasons as in the inclusive case it is important to have a GM-VFNS for one-particle inclusive production of heavy quarks/hadrons
- GM-VFN predictions are now available for a number of processes!
- FFs from fits to LEP data

EXTRACTION OF D^0 , D^+ , D_s^+ , and Λ_c^+ FFs from LEP1 [1]

- $(1/\sigma_{tot})d\sigma/dx$, ZM-VFNS
- $\mu_R, \mu'_F = \sqrt{S}$
- Fit to LEP1 data from OPAL [2]

[2] Alexander et al, ZPC72(1996)1

B.A. Kniehl (Hamburg University)

D-meson production at NLO

- $d\sigma/dp_T$ (nb/GeV), $|y| \le 1$, GM-VFNS
- Uncertainty band: independent variation of $\mu_R, \mu_F, \mu'_F = \xi m_T, \xi \in [1/2, 2]$

- Prompt charm data (no secondary charm from B decay) from CDF in run II
- Data and Theory compatible within errors
- Central values: Data/Theory $\simeq 1.5 1.2$

[1] Kniehl, Kramer, I.S., Spiesberger, hep-ph/0508129; [2] Acosta et al, PRL91 (2003) 241804

B.A. Kniehl (Hamburg University)

Heavy flavour schemes

Fragmentation functions with heavy quark thresholds

<u>Cacciari</u>,Nason,Oleari

hep-ph/0504192

Fragmentation functions do change when a quark threshold is crossed, pretty much like parton distribution functions do: 4-flavour FF's evolve differently from 5-flavour ones (not to mention the existence of the fifth FF!)

The problem has however been pretty much ignored so far in fits to light hadron fragmentation functions:

- Data usually only span an energy range between ~30 and 90 GeV, void of heavy quark thresholds
- All flavours are parametrized by phenomenological forms, with charm and bottom being treated like light flavours
- When fitted initial conditions are given at a very low scale [O(1 GeV)] heavy quark contributions are simply "switched on" at the mass thresholds, i.e. mimicking the Collins-Tung space-like threshold condition, $F_h(x,m) = 0$

All the threshold conditions

Summarizing:

At NLO

$$\begin{split} D_h^{(n)}(x,\mu) &= D_{\bar{h}}^{(n)}(x,\mu) = \\ &\int_x^1 \frac{dy}{y} \, D_g(x/y,\mu) \frac{\alpha_{\rm S}}{2\pi} \, C_{\rm F} \frac{1+(1-y)^2}{y} \left[\log \frac{\mu^2}{m^2} - 1 - 2\log y \right] \\ &D_g^{(n)}(x,\mu) \,=\, D_g^{(n_{\rm L})}(x,\mu) \left(1 - \frac{T_{\rm F}\alpha_{\rm S}}{3\pi} \log \frac{\mu^2}{m^2} \right) \\ &D_{i/\bar{i}}^{(n)}(x,\mu) \,=\, D_{i/\bar{i}}^{(n_{\rm L})}(x,\mu) \qquad \text{for } i = q_1, \dots, q_{n_{\rm L}} \,. \end{split}$$

Time-like equivalent of Collins-Tung relations for parton distribution functions

Outlook: light hadron FF's fit

Analogously to the parton distribution functions case, evolving through a threshold allows to **dynamically generate** the heavy quark fragmentation functions

Recall:

$$\begin{aligned} D_h^{(n)}(x,\mu) &= D_{\bar{h}}^{(n)}(x,\mu) = \\ &\int_x^1 \frac{dy}{y} D_g(x/y,\mu) \frac{\alpha_{\rm s}}{2\pi} C_{\rm F} \frac{1+(1-y)^2}{y} \left[\log \frac{\mu^2}{m^2} - 1 - 2\log y \right] \end{aligned}$$

This will allow to perform fits to light hadron fragmentation data parametrizing only the **three light** quarks and the gluon FF's. The **charm** and **bottom** ones will be **radiatively generated**

Eventually, a comparison with the `five light flavours' sets available today will be possible

Kretzer, '00 Kniehl, Kramer, Poetter, '00 Bouhris, Fontannaz, Guillet, Werlen, '01

Work in progress

Heavy quark fragmentation

QCD analysis of D and B meson FFs

<u>Oleari</u>,Cacciari,Nason hep-ph/0510032

Sophisticated QCD analysis:

- NLO QCD: initial conditions, evolution, coefficient functions
- NLL soft gluon resummation
- Evolution with proper matching at bottom threshold (see above)
- Data corrected for ISR

CLEO and BELLE *D*^{*} fits

- ✓ *D* mesons data fits near the $\Upsilon(4S)$ mass (10.6 GeV)
- ✓ Very good fit in the whole *x* range
- ✓ More fits in [Cacciari, Nason and C.O.], where $D^* \rightarrow D X$ have been modeled from decay chains and branching ratios
- ✓ *B* mesons data fits near the Z^0 mass (91.2 GeV)

Carlo Oleari Heavy-Quark Fragmentation Functions in e^+e^- Collisions 18

ALEPH D* fits at LEP

What about the supposed universality of the non-perturbative fragmentation function?

ALEPH with CLEO/BELLE parameters

- X Discrepancy in the large-x (large-N) region
- ✗ The ratio data/theory well modeled by

 $\frac{1}{1+0.044(N-1)}$

Possible explanation

We can only **speculate** about the possible origin of the discrepancy. If this were due to a non-perturbative correction to the coefficient function of the form

•
$$1 + \frac{C(N-1)}{q^2}$$
 this would lead to the extra factor
 $\frac{1 + \frac{C(N-1)}{M_Z^2}}{1 + \frac{C(N-1)}{M_Y^2}} \implies \sim \frac{1}{1 + 0.044 (N-1)}$ if $C \sim 5 \,\text{GeV}^2$ large value!!
• $1 + \frac{C(N-1)}{E}$ with $E = \sqrt{q^2}/2$ then $C \sim 0.52$ GeV, a much more acceptable value.

Demonstrating the absence (or the existence) of 1/E corrections in fragmentation functions would be a very interesting result, since it would help to validate or disprove renormalon-based predictions.

Heavy quark production at RHIC

Cacciari et al

Charm and bottom production at RHIC

hep-ph/0502203, hep-ph/0511257

- Provide solid QCD benchmark predictions based on FONLL (not 'just another model') including theoretical uncertainties
 - Fair agreement with pp and dAu RHIC data
- The calculation of the quenching ratio for electrons coming from heavy quarks depends critically on the charm/bottom yield. Need for an accurate prediction of their relative production cross sections

For details see Matteo's talk

Heavy quarks and kT-factorization

New test for the kT-factorization: beauty quark production at HERA Zotov, Lipatov

hep-ph/0601240 *y p* hep-ph/0603017 **DIS**

Detailed comparison with differential cross sections

 Predictions also for charm production at LEP and HERA (Important: Test same approach with several processes)

Figure 2: The differential c.s. $d\sigma/dp_T^b$ of inclusive beauty photoproduction at $|\eta^b| < 2, Q^2 < 1$ GeV² and 0.2 < y < 0.8. All curves are the same as in Fig. 1.

HF WG summary, DIS 2006

Heavy quarks and kT-factorization Zotov

Figure 13: The differential c.s. $d\sigma/dx_{\gamma}^{obs}$ of dijets with associated muon from b-decay at $-1.6 < \eta^{\mu} < 2.3, p_T^{\mu} > 2.5$ GeV, $Q^2 < 1$ $GeV^2, 0.2 < y < 0.8, p_T^{jet_1} > 7, p_T^{jet_2} > 6$ GeV and $|\eta^{jet}| < 2.5$. The curves are obtained with account of resolved photon contribution.

HF WG summary, DIS 2006

Heavy quarks and kT-factorization

Non-linear Gluon Evolution and Heavy Quark Production at the LHC <u>Peters</u>,Jung, Kutak,Motyka

Test non-linear effects in evolution of unintegrated PDFs

- Gluon UPDF from HERA F2 data
- Compute HQ production at HERA, Tevatron and LHC
- Tiny effects observed; no significant differences between linear and non-linear evolution

Evolution formalism

- Gluon evolution in the framework of unintegrated gluon density and k_t-factorization
- Kwiecinski et al: Unified BFKL and DGLAP description including saturation effects (KKMS)
- Improvement of BFKL equation by adding non-singular part of DGLAP gluon splitting function
- Resummation of both, leading $\ln Q^2$ and $\ln 1/x$ terms
- Including dominant sub-leading ln 1/x effects via consistency constraint and running α_s

[Kwiecinski, Martin, Stasto, PRD **56** (1997), 3991]

 Non-linear part from BK equation to account for gluon recombination
 [Kutak, Kwiecinski, EP] C29 (2003), 521]

HF WG summary, DIS 2006

Constraints by HERA F2

Peters

non-linear with $R = 2.8 \text{ GeV}^{-1}$ Radius of dense gluon system $xg(x,k_0^2)$ $= N(1-x)^{\rho}$

Evolution formalism describes the data well, no significant difference between linear and non-linear evolution

bb production at ATLAS/CMS and LHCb Peters

Within the ATLAS/CMS acceptance cuts no saturation effects observable

Linear evolution and k_t-factorization can be safely applied

Charmonium production

CEM vs. NRQCD in Charmonium Production Lee,Bodwin,Braaten

hep-ph/0504014

CEM vs. NRQCD in charmonium production Jungil Lee

- We compared CEM and NRQCD predictions for charmonium hep-ph/0504014 production with the CDF data.
 - $-\operatorname{NLO}\,2 \to 1$ parton processes are included.
 - Multiple gluon emission effect is included using k_T -smearing.
- CEM
 - $\ {\rm not} \ {\rm satisfactory} \ {\rm in} \ {\rm both} \ {\rm normalization} \ {\rm and} \ {\rm slope}.$
 - $-k_T$ smearing improves CEM prediction but still unsatisfactory.
- NRQCD
 - NRQCD factorization has more free parameters than the CEM, but it gives a satisfactory fit to the data.
 - In the P-wave case, which is constrained by decay data, k_T smearing is essential to obtain a satisfactory fit.
- Proper inclusion of effects of multiple soft-gluon emission could provide a stringent test of NRQCD factorization in the *P*-wave case.

