Summary of Heavy Flavour Working Group (Experimental)

Paul Thompson, Uri Karshon, Ingo Schienbein

- •Experimental techniques
- B<sub>s</sub> mixing at Tevatron
- open b production
- open c production
- Heavy flavour at RHIC
- B-Factories
- Future

Sorry, not all talks could be fitted in

20 Experimental talks2 joint HFS sessions1 joint SF session

1

# Heavy flavour tagging





E.g. explicit secondary vertex reconstruction

Fit secondary vertex mass distribution



# Heavy flavour tagging

Component of  $\mu$  momentum transverse to jet axis,  $p_{\perp}^{\rm rel}$ 

 Large for B decays because of large B mass

Signed  $\mu$  impact parameter,  $\delta$ 

- Symmetrically distributed around zero for light flavours
- Positive tail for beauty and charm due to life-time

Fit most sensitive variables with MC templates

 $D^*$ - $\mu$  and  $\mu$ - $\mu$  correlations

Correlations between hemispheres provide info on c + b

Employ wide range complementary methods





 $\rm B_{S}$  mixing measurement only at Tevatron due to COM of B-factories

Frequency of oscillations between mass eigenstates  $\Delta m_s = M_H - M_L$  higher than for  $\Delta m_d$ 

Measure the CKM matrix element  $V_{ts}$ 



### **D0** Result



J

## **CDF** Result



- Reconstruction of explicit hadronic decay channels
- Impact parameter trigger

 $\begin{array}{l} 17 < \Delta m_S < 21 \ {\rm ps^{-1}} \ {\rm at} \ 90\% \ {\rm CL} \ ({\rm D} \emptyset \ ) \\ \Delta m_S = 17.33^{+0.42} (stat) \pm 0.07 (syst) ps^{-1}, \\ 17.00 < \Delta m_S < 17.91 \ {\rm ps^{-1}} \ {\rm at} \ 90\% \ {\rm CL} \ , \\ 16.94 < \Delta m_S < 17.97 \ {\rm ps^{-1}} \ {\rm at} \ 95\% \ {\rm CL} \ ({\rm CDF}) \\ (V_{td}/Vts = 0.208^{+0.008}_{-0.007}) \end{array}$ 

### **b** production at Tevatron



#### Tuned fragmentation

Data often higher but description within scale uncertainties

### b jets at Tevatron

#### Daniel Jeans(CDF)

CDF Runll Preliminary



Agreement with (massive) NLO QCD within uncertainties

Large data and theory uncertainties -> improved by measuring b fraction?

### Z+b-jets at Tevatron



Sensitive to different QCD processes

Statistics limit precision

<sup>y</sup> Agreement with (massless) NLO QCD

high scale  $m_Z \Rightarrow$  small theory scale uncertainty

|                                             | CDF RunII measurement          | NLO (MCFM) |
|---------------------------------------------|--------------------------------|------------|
| $\sigma(Z^0 + b - jet) / \sigma(Z^0 + jet)$ | $0.0237 \pm 0.0078 \pm 0.0033$ | 0.0185     |
| $\sigma(Z^0 + b - jet) / \sigma(Z^0)$       | $0.0038 \pm 0.0012 \pm 0.0005$ | 0.0021     |
| $\sigma(Z^0 + b - jet)$                     | $0.96 \pm 0.32 \pm 0.14$ pb    | 0.52 pb    |

## **Compatibility of Tevatron data**

#### Fabio Happacher (INFN), Frascati

hep-ph/0509348

Single b quark data. Ratio to same theory (MC).

| chanr        | nel (ex.) |                  |         | R for $p_T^{min}$ | (GeV/c) =        |       |       |
|--------------|-----------|------------------|---------|-------------------|------------------|-------|-------|
|              |           | 6                | 8-10    | 12-15             | 19-21            | ≈29   | ≈40   |
| J/ΨK⁺        | (CDF)     |                  | 4.0±15% | (3.4)             |                  |       |       |
| $J/\Psi K^+$ | (CDF)     |                  | 2.9±23% | (1.9)             |                  |       |       |
| μX           | (CDF)     |                  |         |                   | 2.5 <b>±</b> 26% | (1.9) |       |
| еX           | (CDF)     |                  |         | 2.4 <b>±</b> 23%  |                  |       |       |
| eDº          | (CDF)     |                  |         |                   | 2.1 <b>±</b> 34% |       |       |
| J/ΨX         | (CDF)     |                  | 4.0±10% | (3.4)             |                  |       |       |
| J/ΨX         | (CDF2)    |                  | 3.1±9%  | (2.7)             |                  |       |       |
| μX           | (DØ)      | 2.1 <b>±</b> 27% |         | (1.7)             |                  |       |       |
| μX           | (DØ)      | 2.5 <b>±</b> 25% |         | (3.5)             |                  |       |       |
| b jets(      | u) (DØ)   |                  |         |                   | 2.4±20%          |       | (2.0) |

- Consistent picture between processes?
- Run II final data...



# $F_2^{bb}$

#### Paul Laycock(H1)



#### Final HERA-I low Q<sup>2</sup> data

Displaced tracks method allows access to lower p<sub>T</sub> reducing extrapolation

Large uncertainty in QCD

Data consistent with all predictions

Require HERA-II data to improve precision and constrain schemes/PDFs

# b from D<sup>\*</sup>- $\mu$ and $\mu$ - $\mu$ correlations

#### Adriana E. Nuncio-Quiroz(ZEUS)



New interface of NLO QCD program to PYTHIA

Consistent with although higher than NLO QCD

Consistent with H1 published data when interpolated to same phase space



HERA-II (only small fraction of data) consistent with HERA-I and QCD Use of ZEUS silicon detector, looking forward to precise HERA-II results

## Open charm production



NLO consistent with data

Not all details described at low  $x_{\gamma}$  (consistent picture with ZEUS D<sup>\*</sup>+jets)



Consistent results between displaced tracks (VTX) and D<sup>\*</sup> methods

Similar overall statistical plus systematic errors for 2 methods

Aim to measure over wide range as possible to constrain PDF



William Dunne(ZEUS)

- Large data sets allow for high statistics studies of c mesons/baryons
- Consistent with fragmentation universality
- Combine final data for improved precision?
  - (Final ZEUS yp data)

Fragmentation ratios



Can be measured at Tevatron



### charm production at HERA-II

Falk Karstens(ZEUS)



Apply cut on secondary vertex decay length Substantial reduction in background Much more charm data to come from HERA

# Heavy Flavour at RHIC

#### Manuel Calderon (STAR)



Charm results at large rapidity from PHENIX also shown (X.Wang)

Measure  $e,\mu,D^0$  in Au+Au collisions for central rapidity

Study suppression w.r.t. p+p depends on "hot" medium and probe mass

Suppression not expected for HF although difficult without tagging b (future->upgrades)

# Rare charmless B decays

#### Wolfgang Gradl(BaBar/Belle)

#### Joint HF+ HFS Session



- Many new and updated results from both B factories
- Rare charmless B decays help to improve understanding of Standard Model amplitudes
- More interesting results to come with more data





Also, D<sub>SJ</sub>, D mixing and lepton decay. Plus, talks on charm at Belle(Kichimi), 22 Quarkonium at BaBar(Vitale), HF at HERA-B(Spighi), B resonances at D0(Gele),,.

# Towards the LHC

#### Claudia Ciocca (CMS)

Studies of top pair production in hadronic channels

| Selection   | Requirement                                                  | ∂ tī<br>[pb]     | ∂ QCD<br>[pb]      | S/B                  | € tī<br>(%)        |
|-------------|--------------------------------------------------------------|------------------|--------------------|----------------------|--------------------|
| Trigger     | HLT b-jets + n-jets                                          | 64               | 11600              | 1/180                | 16.8               |
| Kinematical | $6 \leq N_{jet} \leq 8$<br>$E_T \geq 25~{ m GeV}$ neural net | 59<br>33<br>15.2 | 7900<br>1650<br>91 | 1/130<br>1/50<br>1/6 | 15.5<br>8.7<br>4.0 |
| b-tagging   | 1 b-tag<br>2 b-tag                                           | 14.5<br>10.1     | 61<br>20           | 1/4<br>1/2           | 3.8<br>2.7         |

| Selection          | L=1 fb <sup>-1</sup> |                |                |                                   |                                    |
|--------------------|----------------------|----------------|----------------|-----------------------------------|------------------------------------|
|                    | tī<br>events         | QCD<br>events  | $\epsilon$ (%) | ∆ <i>σ<sub>stat</sub></i><br>[pb] | $(\Delta\sigma/\sigma)_{stat}$ (%) |
| 1 b-tag<br>2 b-tag | 19000<br>13000       | 61000<br>20000 | 2.3<br>1.6     | 12<br>11                          | 1.4<br>1.3                         |

Plus Matthew Wing on relevance of HERA for LHC (HERA-LHC Workshop)

## **Summary**

- Wealth of heavy flavour information from HERA, Tevatron, B-factories, RHIC,...
- Heavy flavours provide direct access to gluon measured indirectly from fits to inclusive data.
- QCD is a success! Differences only in corners of phase space.
- HF sensitive to weak processes and new physics
- HF is a low cross section process and will benefit from machine upgrades E.g.  $B_s$  at Tevatron Run-II, HERA-II
- Much more to come...